Improved Support for SQL Procedural
Language

IBM System i
COMMON Luxembourg 2007

Jarek Miszczyk, IBM Rochester '

IBM LGl e RO ELEDE S software

Simplify Your IT.

IBM System i

Agenda

= Brief Introduction to DB2 SQL Procedural Language
= Faster Execution with Expression Evaluator
= Mastering Nested Compound Statement Handlers

= Implicit Schema Qualification for Static and Dynamic
SQL Statements

© 2007 IBM Corporation

IBM System i

DB2 SQL Procedural Language

= Language similar to SQL Server T-SQL and Oracle PL/SQL
= Subset of SQL/PSM standard

» Database Language SQL - Part 4: Persistent Stored
Modules (ISO/IEC 9075)

» Include SQL procedures, SQL functions and Feature P01,
"Stored modules" support

© 2007 IBM Corporation

IBM System i

Basic Structure of a SQL Procedure

CREATE PROCEDURE <procname> [({optional parameters})]
[optional procedure attributes]

BEGIN [atomic]

... Statements ...

END

For Example:

CREATE PROCEDURBB2USER.COF_DELETE(IN P_ID INTEGER)
LANGUAGE SQL
SPECIFIC DB2USER.COF_DELETE
P1: BEGIN
DELETE FROMCOFFEES WHERHD = P_ID ;
END P1

© 2007 IBM Corporation

IBM System i

Basic Structure - Parameters

/

CREATE PROCEDURE <procn,
[({optional parameters})]
[optional procedure attributes]
BEGIN [atomic]

... Statements ...

END

y

IBM System i

A parameter definition consists of three parts:

* Mode defines if the parameter is input (IN), output
(OUT), or both(INOUT)

e Parameter name

e Data Type is the SQL data type and size

For example:

CREATE PROCEDURiew_salary
(IN empnr INTEGER

INOUT salary ~ DECIMAL(9,2),

OUTupdate_ts ~ TIMESTAMIy

© 2007 IBM Corporation

Basic Structure - Attributes

CREATE PROCEDURE <procname>
[({optional parameters})]
[optional procedure attributes
BEGIN [atomic]

... Statements ...

END

LANGUAGE SQL

RESULT SETS <n>
specifies max number of result sets that can be returned from
procedure.

SPECIFIC <unique_name>
A qualified or unqualified name that uniquely identifies the

procedure, can be used to control procedures "short" name when
procedure name greater than 10 characters

FENCED | NOT FENCED
[CONTAINS | READS | MODIFIES] SQL
NOT DETERMINISTIC | DETERMINISTIC

[OLD | NEW] SAVEPOINT LEVEL

NEW causes savepoint to automatically be created upon entry of
the stored procedure.

COMMIT ON RETURN [YES | NOJ
YES - DB2 issues a commit if the procedure successfully returns.
Result Set cursors must be declared WITH HOLD to be usable
after the commit operation. ATOMIC compound statement
requires COMMIT ON RETURN YES.

© 2007 IBM Corporation

IBM System i

Basic Structure - Procedure Body

CREATE PROCEDURE <procname>

[({optional parameters})]

[optional procedure attributes]

BEGIN [atomic]

procedure statement; [repeatable]
END

IBM System i

Compound statement

Statement that groups other statement together in an SQL
procedure. Compound statements can be nested within each other.

ATOMIC
indicates that if an error occurs, all SQL statements in the
compound statement group will be rolled back.

If ATOMIC specified, COMMIT or ROLLBACK cannot be specified in
the stored procedure

NOT ATOMIC
indicates that an error does NOT cause statements to be rolled back

For example:
CREATE PROCEDURBB2USER.COF_SELECT()
RESULT SETS1
LANGUAGISQL
SPECIFIC DB2USER.COF_SELECT
P1: BEGIN NOT ATOMIC
-- Declare cursors
DECLAREDB2_SP_SQL1 CURSOR FOR
SELECT* FROMDB2USER . COFFEES;
-- Cursor left open for client application.
OPENDB2_SP_SQL1;

ENDP1

© 2007 IBM Corporation

Multiphase process to create stored procedure executable

DB2 SQL PL Source Code

C embedded SQL source

Pure C source

*PGM

e Development system requirements
e Openness Includes (5769-SS1)

e DB2 SQL Development Kit requirement
eliminated in V5R2

o C compiler requirement eliminated in V5R1
e Performance Considerations

e Generated C code is not as efficient as
user-written code

© 2007 IBM Corporation

IBM System i

V5R4 Expression Evaluator

© 2007 IBM Corporation

IBM System i

The need for Expression Evaluator

= The SQL PL supports standard programming constructs such as loops
(FOR), conditions (IF THEN) and assignments (SET i=j +1)
= Before V5R4 these simple constructs were executed as queries against
a "dummy" system table QSYS2/QSQPTABL
= Negative performance impact on "tight looping" procedures
> The SQL statement goes through the entire SQL stack
- Statement is parsed
— Access plan stored in *PGM is validated, and re-planned if
necessary
— Open Data Path created or reused
» Potentially large number of reusable ODPs over the
QSYS2/QSQPTABL table
— ODPs processing takes CPU and ODPs increase memory foot
print

© 2007 IBM Corporation

IBM System i

V5R4 Expression Evaluator

= A fast path evaluator for 'table-less' SQL scalar expressions
> Scalar expressions in procedural statements (e.g. IF, SET)
» No need for Open/Fetch/Close processing
> No ODPs associated with simple statements
= Early performance tests show up to 30% better performance
> The performance gains depend on the number of tightly looping
statements in a procedure
» Caching of expressions improves performance on consecutive
operations
» Your mileage will vary!
= The expression evaluator is disabled for scalar operations that:
> refer LOBs
> invoke UDFs
= Column QVCLE for record ID 1000 in database monitor traces indicates

whether expression evaluator was used to run the procedural statement
» Statements converted to in-line C not recorded in dbmon

© 2007 IBM Corporation

IBM System i

Expression Evaluator Example - 1 of 3

create procedure justice_for_all(out o_number_of_rai ses int, out o_cost_of_raises decimal(9,2))
language sql

proc_body:

begin

declare v_avg_tenure int;

declare v_avg_compensation decimal(9,2);

declare v_number_of_raises int;

declare v_cost_of_raises decimal(9,2);

set v_avg_tenure = 0;
set v_avg_compensation = 0.0;

select avg(year(current_timestamp) - year(hiredate)), decimal(avg(salary + bonus +comm),9,2)
into v_avg_tenure, v_avg_compensation
from employee;

set v_number_of_raises = 0;

set v_cost_of_raises = 0.0;

for_loop:

R each_row AS c1 CURSOR FOR
SELECT year(current_timestamp) - year (hiredate) as tenure,

salary+ bonus + comm a s compensation

FROM employee
DO

IF tenure > v_avg_tenure and compensation < v_avg_c ompensation
THEN
UPDATE employee SET salary = sala ry + (v_avg_compensation - compensation)
WHERE CURRENT OF c1;
S ET v_number_of_raises = v_number_of_raises + 1;
SET v_cost_of_raises = v_cost_of_r aises + (v_avg_compensation - compensation);
END IF;

D FOR;
SET o_number_of_raises = v_number_of_raises;
SET o_cost_of_raises =v_cost_of_raises;

END proc_body;

© 2007 IBM Corporation

IBM System i

Expression Evaluator Example - 2 of 3
® FOR loop execution until first update

Database Monitor Trace for V5R3

QQC21 QQ1000
4—, OP DECLARE C1 CURSOR FOR SELECT YEAR (CURRENT_TIMESTAMP) - YEAR (HIREDATE)

Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : HFROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : HFROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : HFROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : HFROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : HFROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : HFROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : HFROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H: H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H
Sl SELECT 1INTO : H FROM QSYS2 . QSQPTABL WHERE : H:H>:H:HAND:H:H<:H:H

1

upP UPDATE EMPLOYEE SET SALARY = SALARY +(:H:H-:H:H)WHERE CURRENT OF C
SV SET:H:H=:H:H+(:H:H-:H:H)

Database Monitor Trace for V5R4

QQC21 QVC21 QQ1000

OP N DECLARE C1 CURSOR FOR SELECT YEAR (CURRENT_TIMESTAMP) - YEAR (HIREDATE)
uP N UPDATE EMPLOYEE SET SALARY = SALARY + (:H:H-:H:H)WHERE CURRENT OF C1
SV Y SET:H:H=:H:H+(:H:H-:H:H)

© 2007 IBM Corporation

IBM System i

Expression Evaluator Example - 3 of 3

e List ODPs in a job after stored procedure execution

List of ODPs on V5R3

Member/ Record File l[e}
File Library Device Format Type Count
SYSROUTINE QSYS2 SYSRO00001 SYSRO00001 PHY 5
QASQRESL QSYS2 QASQRESL QASQRESL LGL 9
QSQPTABL QSYS2 QSQPTABL FORMAT0001 PHY 90
EMPLOYEE SAMPLE EMPLOYEE FORMATO0001 PHY 89
QSQPTABL QSYS2 QSQPTABL FORMAT0001 PHY 89
EMPLOYEE SAMPLE EMPLOYEE FORMATO0001 PHY 9
EMPLOYEE SAMPLE EMPLOYEE PHY 469

List of ODPs on V5R4

Member/ Record File 110
File Library Device Format Type Count
SYSROUTINE QSYS2 SYSRO00001 SYSRO00001 PHY 5
QASQRESL QSYS2 QASQRESL SYSRO00001 LGL 9
EMPLOYEE SAMPLE EMPLOYEE FORMATO0001 PHY 89
EMPLOYEE SAMPLE EMPLOYEE FORMATO0001 PHY 9
EMPLOYEE SAMPLE EMPLOYEE PHY 469

© 2007 IBM Corporation

IBM System i

Condition Handlers in Nested
Compound Statements

© 2007 IBM Corporation

IBM System i

Compound Statements Revisited

e Compound Statement consists of BEGIN/END
block and any number of SQL statements
contained within the block

* DB2 for iSeries supports nested compound
statements

e used to scope constructs such as variables,

CREATE PROCEDURE <procname>
[({optional parameters})]
[optional procedure attributes]

BEGIN [atomic] cursor declarations, and condition handlers
SQL statement; [repeatable] e only constructs within the same or enclosing
END compound statement are visible

The general structure of a compound statement:

BEGIN
<variable declarations>

<condition declarations>

<cursor declarations>

<condition handler declarations>
<SQL statement list/procedure logic>
END

© 2007 IBM Corporation

IBM System i

Condition Handler

e Condition Handler is an SQL statement executed
when an exception or completion condition occurs
within the compound statement

o A condition handler must specify

* Handled conditions
» Where to resume execution (CONTINUE, EXIT
or UNDO)
o Action to perform to handle the condition
e Action can be any SQL statement including
a compound statement

e Scope of the handler is limited to the containing

compound statement

BEGIN

<variable declarations>

<condition declarations>

<cursor declarations>

<condition handler declarations>
<SQL statement list/procedure logic>
END

Three types of condition handlers:

BEGIN [ATOMIC]
DECLARE <type> HANDLER FOR <conditions>

raises <handler-action>

exception \statement_l;/CONT|NUE point
statement_2;
st

END UNDO or EXIT point

© 2007 IBM Corporation

IBM System i

SQLSTATE

= SQLSTATE is a five-character string contained in DB2 Communications
Area (DB2 CA)

> Access from SQL PL requires explicit declaration
— DECLARE SQLSTATE CHAR(5); -- must be outer most scope

= Automatically set by DB2 after each SQL operation
= SQLSTATE values

> '00000', success

> '01XXX', warning

> '02000', no data was found on select/fetch, insert, update or delete

» Everything else unsuccessful

© 2007 IBM Corporation

IBM System i

Handler Conditions

= General conditions:
> SQLWARNING, SQLEXCEPTION, NOT FOUND
= Can assign name to specific condition:
» DECLARE not_found CONDITION FOR SQLSTATE '02000";
= SQLSTATE values
> User-defined
— Classes that begin with ‘7’ through ‘9’, or ‘I' through ‘Z’ may be
defined. Use any sub-class.
» Reserved for DB2
— Classes that begin with ‘0’ through ‘6’, or ‘A’ through ‘H’ are
reserved for the database

© 2007 IBM Corporation

IBM System i

Condition Declaration

e Condition name allows user friendly alias (e.g.,
duplicate_key) to be associated with more-cryptic
SQLSTATE values such as '02505'

e Condition name must be unique within the Stored

Procedure

BEGIN

<variable declarations>
<condition declarations>
<cursor declarations>
<condition handler declarations:
<SQL statement list/procedure logic>
END

For example:

DECLAREDUPLICATE_KEYCONDITION FOR SQLSTATE '02505;
DECLARE EXIT HANDLER FOR DUPLICATE_KEY
BEGIN
GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TE XT;
INSERT INTO jm_debug (SQLTEXT, T1)
VALUES ('Level2-Exit Handler: Error message: ' Il
SQLERRM, CURRENT TIMESTAMP) WITH NC;

END ;

© 2007 IBM Corporation

IBM System i

SIGNAL and RESIGNAL Statements

® RESIGNAL statement resignals an exception condition
® Can be coded only as part of the condition handler

@ In the Simplest form has no parameters and used to
reissue the same condition that caused the handler
to be invoked

BEGIN
DECLARE too_many_rows CONDITION
FOR SQLSTATE ‘70001
DECLARE EXIT HANDLER FO
BEGIN
INSERT INTO jm_deb

RESIGNAL;
END;
SELECT count(*) INTO v_num_rows
FROM item_fact;
IF v_num_rows > upper_limit THEN

-

SIGNAL too_many_rows
SET MESSAGE_TEXT =
‘No of row limit exceeded.;

END

® SIGNAL statement causes error or warning condition to
be returned with the specified SQLSTATE & optional
message text
® Message text can be up to 70 bytes in length, longer
messages will be truncated without warning
® If a handler for the signaled exception exists, exception
is handled and control transferred to handler

© 2007 IBM Corporation

IBM System i

Non-trivial example - 1 of 3

CREATE PROCEDURE SQLTUTOR.P_NESTED_TEST (IN P_TABIE_NAME VARCHAR(128),
OUT P_ERROR_IND_OU T CHARACTER(1))

LANGUAGE SQL

SPECIFIC P_NESTED_TEST

Level _1:

BEGIN -- Main Procedure Body; Level-1 Compound Statement

DECLARE V_REF_CURSOR_TEXT VARCHAR (1024) ;

DECLARE V_SQL_STMT_EXEC1 VARCHAR (1024) ;

DECLARE SQLERRM VARCHAR (4000) DEFAULT ";

DECLARE V_AVG_PRICE DOUBLE PRECISION ;

DECLARE V_ROWS_INSERTED INTEGER DEFAULT O ;

DECLARE OBJECT_NOT_FOUND CONDITION FOR SQLSTATE '4204' ;

DECLARE COFFEES_QUERY_FAILED CONDITION FOR SQLSTAT®Z0010' ;

DECLARE COFFEES_UNKNOWN_AVG_PRICE CONDITION FOR SPATE '70019';

DECLARE COFFEES_INSERT_FAILED CONDITION FOR SQLSTAE '70020" ;

DECLARE C_GET_COFFEES CURSOR FOR V_CUR_STMT ;

-- Exit handler scoped to the main procedure body

DECLARE EXIT HANDLER FOR SQLEXCEPTION

BEGIN

GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TEXT;

SET P_ERROR_IND_OUT ='Y";

INSERT INTO JM_DEBUG (SQLTEXT)

VALUES ('Level_1-Exit Handler for sglexception: M essage : '
|| SQLERRM) WITH NC ;
RESIGNAL ;
END ;
-- Level_1 compound statement body starts here
SET V_REF_CURSOR_TEXT = 'SELECT avg(price) FROM ' || TRIM (P_TABLE_NAME) ;

PREPARE V_CUR_STMT FROM V_REF_CURSOR_TEXT ;
INSERT INTO JM_DEBUG (SQLTEXT)

VALUES ('Level_1-Main Procedure Body: V_CUR _STMT prepared');
-- Level_2_1 compound statement continued on the ne xt page

© 2007 IBM Corporation

IBM System i

Non-trivial example - 2 of 3

-- Level_2_1 compound statement
Level_2_1:
BEGIN
-- exit handler scoped to compound statement Level
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSA
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES (" Level_2_1-Exit Handler
|| SQLERRM) WITH NC ;
SIGNAL COFFEES_QUERY_FAILED SET MESSAGE_TEX
END ;
-- continue handler scoped to scoped to compound

BEGIN
GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSA
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES (' Level_2_1-Handler for SQLST
|| SQLERRM) WITH NC ;
SET V_AVG_PRICE=0.0;
END ;
-- Level_2_1 compound statement body starts here
OPEN C_GET_COFFEES ;
FETCH C_GET_COFFEES INTO V_AVG_PRICE ;
CLOSE C_GET_COFFEES ;
IF V_AVG_PRICE IS NULL THEN
SIGNAL COFFEES_UNKNOWN_AVG_PRICE
SET MESSAGE_TEXT = 'Unknown avg price
END IF;
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES (' Level_2_1 - Body: v_avg_price =
END Level 2 1 ;
-- Level_1 body resumes here

GE_TEXT ;
for Select: Message: *
T = SQLERRM ;

statement Level_2_1

DECLARE CONTINUE HANDLER FOR COFFEES_UNKNOWN_AVEPR

GE_TEXT;

ATE 70019: Message: *

of coffee.’;

‘|| TRIM(CHAR(V_AVG_PRICE))) WITH NC ;

© 2007 IBM Corporation

IBM System i

Non-trivial example - 3 of 3

-- Level_1 body resumes here
INSERT INTO JM_DEBUG(SQLTEXT)
VALUES ('Level_1-Resuming processing after
WITHNC ;
SET V_SQL_STMT_EXEC1 ='INSERT INTO ' || TRIM (P_T
|| VALUES(10, "Colombian Supreme", 10, 9.95
-- Level_2_2 compound statement
Level_2_2:
BEGIN
-- exit handler scoped to compound statement Level_
DECLARE EXIT HANDLER FOR OBJECT_NOT_FOUND
BEGIN
GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSA
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES (' Level_2-2-Handler for
|| SQLERRM) WITH NC ;
SIGNAL COFFEES_INSERT_FAILED SET MESSAGE_TE
END;
-- Level_2_2 compound statement body starts here
EXECUTE IMMEDIATE V_SQL_STMT_EXEC1 ;
GET DIAGNOSTICS V_ROWS_INSERTED = ROW_COUNT ;
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES (' Level_2-2-Main Body: ' || T
|| ' row(s) inserted in COFFEES.") WI
END Level 2 2 ;
-- Level_1 body resumes here
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES ('Level_1-Resuming processing after end of
SET P_ERROR_IND_OUT ='N';
END level_1 ;

end of Level_2_1 compound statement.")

ABLE_NAME)
, 1000, 1000)';

GE_TEXT ;
Insert: Message: *

XT = SQLERRM ;

RIM(CHAR(V_ROWS_INSERTED))
THNC;

Level_2_2 compound statement.') WITH NC ;

© 2007 IBM Corporation

IBM System i

TestCase 1-1o0f4

Stored Procedure Invocation
-- Table COFFEES is empty at first

CALL P_NESTED_TEST('COFFEES", '");

—-Level_2_T compound statement body starts here
OPEN C_GET_COFFEES ;
FETCH C_GET_COFFEES INTO V_AVG_PRICE ;
CLOSE C_GET_COFFEES ;

IF V_AVG_PRICE IS NULL THEN

SIGNAL COFFEES_UNKNOWN_AVG_PRICE Table COFFEES is empty.
SET MESSAGE_TEXT = ‘Unknown avg price of co ffee.; Execution proceeds until IF statement in
END IF ; compound statement Level_2_1 is
reached.

The value of V_AVG_PRICE is NULL
(unknown) at that point.

Content of JIM_DEBUG
Level_1-Main Procedure Body: V_CUR_STMT prepared

© 2007 IBM Corporation

IBM System i

TestCase 1-2o0f4

Level_2_1:
BEGIN

-- Level_2_1 compound statement body starts here
OPEN C_GET_COFFEES ;
FETCH C_GET_COFFEES INTO V_AVG_PRICE ;
CLOSE C_GET_COFFEES ;
IF V_AVG_PRICE IS NULL THEN
SIGNAL COFFEES_UNKNOWN_AVG_P
SET MESSAGE_TEXT =

‘Unknown avg price of coffee.";
END IF;

Since V_AVG_PRICE has value of NULL
the SIGNAL
COFFEES_UNKNOWN_AVG_PRICE is
fired.

This custom error condition corresponds to
SQLSTATE '70019*

END Level 2 1 ;

Content of JIM_DEBUG
Level_1-Main Procedure Body: V_CUR_STMT prepared

© 2007 IBM Corporation

IBM System i

Test Case 1 -3 0f4

Level_2_1:
BEGIN

-- continue handler scoped to scoped to compound
-- statement Level_2_1

PDECLARE CONTINUE HANDLER
For COFFEES_UNKNOWN_AVG_PRIC

BEGIN
GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES('Level_2_1-Handler for SQLSTATE 70019:

|| SQLERRM) WITH NC ;
SET V_AVG_PRICE=0.0;

END ;

-- Level_2_1 compound statement body starts here

IFV_AVG_PRICE IS NULL THEN
SIGNAL

SET MESSAGE_TEXT = 'Unknown avg price of co
END IF ;

END Level 2 1 ;

COFFEES_UNKNOWN_AVG_PRICE

_TEXT;

Message: '

ffee.";

DB2 runtime tries to locate the handler for the
particular condition within the same
compound statement.

Condition Handler found and invoked.
V_AVG_PRICE setto 0.0

Content of IM_DEBUG

Level_1-Main Procedure Body: V_CUR_STMT prepared

Level_2_1-Handler for SQLSTATE 70019: Message:

Unknown avg price of coffee.

IBM System i

Test Case 1 -4 of4

-- Level_1 body resumes here

~ = TINSERT INTO JM_DEBUG(SQLTEXT)

VALUES ('Level_1-Resuming processing after

~ +SET V_SQL_STMT_EXEC1 = 'INSERT INTO ' || TRIM (P_T

|| ' VALUES(10, "Colombian Supreme", 10, 9.95
-- Level_2_2 compound statement
Level_2_2:

BEGIN

-- Level_2_2 compound statement body starts here
~ =~ = EXECUTE IMMEDIATE V_SQL_STMT_EXEC1 ;
— -GET DIAGNOSTICS V_ROWS_INSERTED = ROW_COUNT ;
— -INSERT INTO JM_DEBUG (SQLTEXT)
VALUES (' Level_2-2-Main Body: " || T
|| * row(s) inserted in COFFEES.") WI

END Level 2 2 ;

-- Level_1 body resumes here

~ T INSERT INTO JM_DEBUG (SQLTEXT)

VALUES ('Level_1-Resuming processing after end of
- 1 SET P_ERROR_IND_OUT ='N';

END level 1 ;

end of Level_2 1 ...
ABLE_NAME)
, 1000, 1000)';

RIM(CHAR(V_ROWS_INSERTED))

THNC ;

Level_2_2 compound

© 2007 IBM Corporation

The execution
successfully continues
until the end of the main
procedure body is
reached.

Compound statement
Level_2 2 inserts a new
row into COFFEES.

Content of JM_DEBUG

Level_1-Main Procedure Body: V_CUR_STMT prepared

Level_2_1-Handler for SQLSTATE 70019: Message:

Unknown avg price of coffee.

Level_2_1 - Body: v_avg_price = 0EO

Level_1-Resuming processing after end of Level_2_1

compound statement.

Level_2-2-Main Body: 1 row(s) inserted in COFF

EES.

Level_1-Resuming processing after end of Level_2_2

compound statement.

© 2007 IBM Corporation

IBM System i

Test Case 2

GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TEXT,;
SET P_ERROR_IND_OUT ="Y";

LARE EXIT HANDLER FOR OBJECT_NOT_FOUND

oo »

-- Level_2_2 compound statement body starts here

GET DIAGNOSTICS V_ROWS_INSERTED = ROW_COUNT ;
INSERT INTO JM_DEBUG (SQLTEXT) VALUES("
END Level 2 2 ;
-- Level_1 body resumes here

“--J=END level_1 ;
-

EXECUTE IMMEDIATE V_SQL_STMT_EXEC1 ;

Level_2-2-Main..

[CALL P_NESTED_TEST('COFFEES', '"); j
(Level 1: RNe . .
- The execution proceeds until the
- handler scoped to the main procedure body EXECUTE IMMEDIATE statement is
-ﬁ_ARE EXIT HANDLER FOR SQLEXCEPTION reached.
IN The row with the key value 10 in the

first column already exists.
DB2 runtime throws a duplicate key

INSERT INTO JM_DEBUG (SQLTEXT) VALUES('Level_1-Ex it Handler ... ;

RESIGNAL ; exception

END; First, the DB2 runtime tries to locate a

Level _2_2: handler for this specific condition in the
—exit handler scoped to compound statement Level_ 2.1 compound statement Level_2_2.

Then, the runtime searches for a
general handler, which also does not
exist in Level_2_2.

Control returns to the main procedure
body with the error condition pending.
The runtime locates the general
handler for SQL exceptions and
invokes it.

Content of JM_DEBUG

Level_1-Main Procedure Body: V_CUR_STMT prepared

Level_2_1 - Body: v_avg_price = 9.949999999999

9993E0

Level_1-Resuming processing after end of Level 2_1

compound statement.

Level_1-Exit Handler for sglexception: Message : Du

plicate key value specified.

© 2007 IBM Corporation

IBM System i

Lessons Learned from Test Cases

= Condition handlers are scoped to the compound statement in

which they are declared

= Handlers for specific SQLSTATESs are invoked BEFORE
handlers for general conditions (SQLEXCEPTION,
SQLWARNING, NOT FOUND)

= Unhandled conditions are returned to the upper level
compound statement - eventually to caller

= Custom SQLSTATE and a handler can be used to deal with
user-defined error conditions in SQL PL

© 2007 IBM Corporation

IBM System i

Implicit Schema Qualification for
Static and Dynamic SQL Statements

© 2007 IBM Corporation

IBM System i

Default Schema

= Default schema is used to implicitly qualify unqualified database object
names
» Alias, constraint, external program, index, nodegroup, package, sequence,
table, trigger, and view names
= Default Schema for static SQL statements
» For SQL naming (*SQL), the default schema is set to the authorization ID (user
profile name) in effect when the stored procedure is created.
» For system naming (*SYS), the default schema is set to the job's library list
(*LIBL).
= Default Schema for dynamic SQL statements:
» For SQL naming (*SQL), the default schema is set to the authorization ID (user
profile name) in effect when the stored procedure is executed.
» For system naming (*SYS), the default schema is set to the job's library list
(*LIBL).

© 2007 IBM Corporation

U

pesccccccccan

IBM System i

I(mplicit Qualification Example

CREATE PROCEDURE TestDynSQL ()
LANGUAGE SQL

MainBody: BEGIN
DECLARE STMT VARCHAR (128) ;
DECLARE SQLERRM VARCHAR (256) DEFAULT *;
DECLARE Errorindicator CHAR(1) DEFAULT 'N';
Static_Stmt: BEGIN

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

BEGIN

GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE ~ _TEXT ;
INSERT INTO jm_debug (SQLTEXT)
VALUES ('Static Statement Failed: '[|SQLER RM) WITH NC;
SET Errorindicator = 'Y";
END;
INSERT INTO jm_debug VALUES('Static Statement Succe eded.’);

END Static_Stmt;
Dynamic_Statement: BEGIN
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_T EXT ;
INSERT INTO jm_debug (SQLTEXT)
VALUES ('Dynamic Statement Failed: '||SQLERRM
SET Errorindicator = 'Y";
END;
SET STMT ='INSERT INTO jm_debug
VALUES("Dynamic Statement Succeeded.")’;
PREPARE S1 FROM STMT ;
EXECUTE S1;
END Dynamic_Stmt;
IF Errorindicator ='Y' THEN
SIGNAL SQLSTATE '70000" SET
message_text="There were errors. Check jm_de
END IF;
L END MainBody;

) WITH NC;

bug for details.";

IBM System i

Test Case 3

Static_Stmt: BEGIN
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

INSERT INTO jm_debug VALUES('Static Statement Succe
END Static_Stmt;
Dynamic_Statement: BEGIN
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_T EXT ;
INSERT INTO jm_debug (SQLTEXT)
VALUES ('Dynamic Statement Failed: ||SQLERRM
SET Errorindicator ='Y";

eded.’);

) WITH NC;

--+1- END;

SET STMT ="INSERT INTO jm_debug
VALUES("Dynamic Statement Succeeded.")’;
PREPARE S1 FROM STMT ;
EXECUTE S1,
ND Dynamic_Stmt;
IF Errorindicator = "Y' THEN

””” “* SIGNAL SQLSTATE '70000' SET

message_text="There were errors. Check jm_de
details.";
END IF;

bug for

P-END MainBody;

-

(The stored procedure attempts to
insert two rows into the jm_debug
table.

Static insert SQL statement is used.
The errors in the Static_Stmt
compound statement are intercepted
and handled by the continue handler.
A dynamic SQL statement is used to
insert a second row.

The errors are handled by the
continue handler in the
Dynamic_Stmt compound statement .

S 4

© 2007 IBM Corporation

s N
Invocation:

The stored procedure is created by
user DB2ADMIN.

The jm_debug table resides in the
DB2ADMIN schema.

The naming convention in effect is
*SQL.

User called DB2GURU with (*ALLOBJ)
invokes the stored procedure.
DB2GURU sets the PATH :

SET PATH = DB2ADMIN;
N .
s N
Excution:
Static statement succeeds.
The dynamic statement fails.
DB2 uses the runtime authorization ID
to resolve the unqualified name.

No jm_debug table in schema
DB2GURU.

DB2 signals an SQL exception.

Content of IM_DEBUG

Static Statement Succeeded.

Dynamic Statement Failed: JM_DEBUG in DB2GURU type

*FILE not found.

© 2007 IBM Corporation

IBM System i

Implicit Qualification - New Options on CREATE
PROCEDURE

= Default collection (DFTRDBCOL)
» Specifies schema used for unqualified names of tables, views, indexes, and
SQL packages
> Applies only to static SQL statements.
= Dynamic default collection (DYNDFTCOL)
» Specifies if default schema name specified for DFTRDBCOL is also used for
dynamic statements
= By default, these two attributes are set to: DFTRDBCOL(*NONE),
DYNDFTCOL(*NO)
> Default DB2 behavior observed in Test Case 3
» DFTRDBCOL(*NONE) means no default schema has been set

CREATE PROCEDURE TestDynSQL ()
LANGUAGE SQL
SPECIFIC testdynsql
MODIFIES SQL DATA
SET OPTION DYNDFTCOL=*YES
BEGIN

END

© 2007 IBM Corporation

IBM System i

Test Case 4

Procedure Creation:

To avoid hardcoding, the DFTRDBCOL
keyword has been deliberately omitted.

CREATE PROCEDURE TestDynSQL ()

LANGUAGE SQL The naming convention in effect is *SQL.
SET OPTION DYNDFTCOL=*YES The DFTRDBCOL is inherited from the
current environment.
Static_Stmt: BEGIN At deployment default schema set to
- DB2ADMIN.
‘ INSERT INTO jm_debug VALUES('Static Statement Succe eded.);

The program object has the following
attributes:

DFTRDBCOL=DB2ADMIN
DYNDFTCOL=*YES

END Static_Stmt;
Dynamic_Statement: BEGIN

SET STMT ='INSERT INTO jm_debug
VALUES("Dynamic Statement Succeeded.")’;
REPARE S1 FROM STMT ;
EXECUTE S1; Execution:

END Eiymenite i Both static and dynamic unqualified
statements are implicitly qualified with
DB2ADMIN.

END MainBody;

The stored procedure completes
successfully

Content of JIM_DEBUG
Static Statement Succeeded.
Dynamic Statement Succeeded.

© 2007 IBM Corporation

IBM System i

Access Authority - Options on CREATE PROCEDURE

= Object access authority is managed by USRPRF and DYNUSRPRF
attributes
= User profile (USRPRF)

» Specifies user profile used when the compiled routine is run, including the
authority to each object in static SQL statements

» The profile of *OWNER or *USER is used
= Dynamic user profile (DYNUSRPRF)
» Specifies user profile used for dynamic SQL statements
» The profile of program's user or program's owner is used
= By default, these parameters are set to USRPRF(*NAMING) and

DYNUSRPRF(*USER)
» Translates to USRPRF(*OWNER) and DYNUSRPRF(*USER) for SQL naming

(CREATE PROCEDURE TestDynSQL ())

LANGUAGE SQL
SPECIFIC testdynsql
MODIFIES SQL DATA
SET OPTION DYNDFTCOL=*YES, DYNUSRPRF=*OWNER
BEGIN

END
N v

© 2007 IBM Corporation

IBM System i
. - ~
Test Case 4 Revisited 1 of 2 Invocation:
The stored procedure is created by user
DB2ADMIN.
- ~ The jm_debug table resides in the
CREATE PROCEDURE TestDynSQL () DB2ADMIN schema.
LANGUAGE SQL The namin L -
g convention in effect is *SQL.
—%
SET OPTION DYNDFTCOL=*YES *PGM object attributes:
Static_Stmt: BEGIN DFTRDBCOL=DB2ADMIN
. DYNDFTCOL=*YES
‘INSERT INTO jm_debug VALUES('Static Statement Succe eded.”); USRPRF(*OWNER)
Eeriiitiz“%_t:tt:nt\;ent' BEGIN DYNUSRPRF(*USER)
y - i User called DB2USR (*USER) invokes the
SET STMT = 'INSERT INTO jm_debug stored procedure.
VALUES("Dynamic Statement Succeeded.")’; N -~
PREPARE S1 FROM STMT ;
EXECUTE S1; Execution:
END Dynamic_stmt Both static and dynamic unqualified
END MainBody: statements are implicitly qualified with
N / DB2ADMIN.
Current user DB2USR has no access
authority to JM_DEBUG therefore dynamic
statement fails.)

Content of JIM_DEBUG
Static Statement Succeeded.
Dynamic Statement Failed: Not authorized to object JM_DEBUG in DB2ADMIN type *FILE.

© 2007 IBM Corporation

IBM System i

o s N
Test Case 4 Revisited 2 of 2 Invocation:
The stored procedure is created by user
DB2ADMIN.
P ~ The jm_debug table resides in the
CREATE PROCEDURE TestDynSQL () DB2ADMIN schema.
ANEL G B The naming convention in effect is *SQL
SET OPTION DYNDFTCOL=*YES, DYNUSRPRF=*OWNER . . . i ’
PGM object attributes:
Static Stmt: BEGIN DFTRDBCOL=DB2ADMIN
. DYNDFTCOL=*YES
' INSERT INTO jm_debug VALUES('Static Statement Succe eded.); USRPRF(*OWNER)
END Sty il DYNUSRPRF(*OWNER)
Dynamic_Statement: BEGIN)
User called DB2USR (*USER) invokes the
SET STMT ="INSERT INTO jm_debug stored procedure.
VALUES("Dynamic Statement Succeeded.")’; v
PREPARE S1 FROM STMT ;
EXECUTE S1; o
END Dynamic_Stmt; Executhn. . -
Both static and dynamic unqualified
END MainBody; statements are implicitly qualified with
Also Required: DB2ADMIN.
grant execute on procedure testdynsql to db2usr ; Owner user(DB2ADMIN) has access
GRTOBJAUT OBJ(DB2ADMIN) OBJTYPE(*LIB) USER(DB2USR) authority to JM_DEBUG. Both static and
AUT(*USE) dynamic statements succeed.. y
N y

Content of JIM_DEBUG
Static Statement Succeeded.
Dynamic Statement Succeeded.

© 2007 IBM Corporation

IBM System i

Software Prerequisites

= Always install the latest database group PTF
= SF99502 for V5R2, SF99503 for V5R3, or SF99504 for V5R4

0S/400 V5R2 i5/0S V5R3 i5/0S V5R4
Expression Evaluator N/A N/A in base
Complex Nested Compund SI117232, S118929 in base
Statement SI17233
Implicit Qualification SI116196 SI16197 | S118022 SI18024 | in base
(DFTRDBCOL, DYNDFTCOL | SI116198 S118025
options) S118029

© 2007 IBM Corporation

IBM System i

Additional Info

= Improving SQL procedure performance
http://www-304.ibm.com/jct09002c/partnerworld/wps/serviet/ContentHandler/VSHA-6WPNQL

= Improve Your Productivity with Significant Enhancements in DB2 SQL,

MC Press Online
http://www.mcpressonline.com/mc/1@1.VJficl48I1Gm.0@.6b2a798b

= DB2 SQL PL Essential Guide for DB2 UDB on Linux, UNIX, Windows, i5/0S, and z/OS,
IBM Press, ISBN 0-13-147700-5

= Cross-Platform DB2 Stored Procedures: Building and Debugging,
ITSO Redbook, SG24-5485

= Stored Procedures, Triggers and User Defined Functions on DB2 Universal Database for iSeries,
ITSO Redbook, SG24-6503

© 2007 IBM Corporation

