
© 2011 IBM Corporation

IBM Power Systems

Moving from DDS to SQL

Rob Bestgen – bestgen@us.ibm.com
IBM i – Rochester Development Lab

© 2011 IBM Corporation

IBM Power Systems

2

Why move?

Why move from DDS to SQL?

� Data-Centric programming

– Let the Database do more for you!

� Take advantage of the latest DB2 technology

� Drive work into the database instead of the application
– Improve consistency and efficiency

� Leverage new tools technology

� Open up new ways to access data

– PHP, JDBC, ODBC, .NET, CLI

© 2011 IBM Corporation

IBM Power Systems

3

Data Centric Programming – the SQL Difference

T1 T2 T3 T4

HLL PGM or Interface

DB2

Results

T1 T2 T3 T4

HLL PGM

DB2

Results

Data Access
Traditional RLA

Data Centric
SQL Data

Security!

Knowledge!
Consistency!

Pushes work down

DB interface

© 2011 IBM Corporation

IBM Power Systems

4

Advantages, A Laundry List…

� Take advantage of features and functions only available via SQL

� Take advantage of modern solutions and tooling based on SQL

� Turn data into information

� Protect sensitive data

� Increase reusability of existing components in both current and future applications

� Increase the life expectancy and extend the value of legacy applications

� Reduce maintenance delays and overhead associated with altering the database

� Easier to embrace modern and/or evolving architectures and designs

� Reusability of data, functions, procedures, across platforms and systems

� Availability of talented SQL programmers

� Update skills of existing programmers

© 2011 IBM Corporation

IBM Power Systems

5

Data Modeling Best Practices

� Use proper column definitions (i.e. type, length, precision, scale)

� Use only one key column to represent the relationship between any two tables

� Key columns should be of the same type and have the same attributes (i.e.

type, length, precision, scale)

� Meaningless keys are acceptable and encouraged

� Define and use constraints

� Define and implement a proper indexing strategy

� Define and implement views to assist the programmers and users

© 2011 IBM Corporation

IBM Power Systems

6

Protecting Your Investment in IBM i

Rapid Application Development

� SQL & RPG Integration

� Stored procedure Result Set consumption

� FIELDPROC for transparent
column-level encryption

� XML Integration

– XML data type

– Annotated XML Decomposition

– SQL XML Publishing functions

� Three-part Naming

� Compatibility with DB2 Family & Oracle

– MERGE statement

– Array support & Global Variables
– REPLACE option on CREATEs
– Currently Committed supported

� JDBC & .NET enhancements

Trusted Reliability

� Enhanced Remote Journal filtering

� Library-level Journaling filtering

� IASP spanning transactions

Performance & Self-Tuning Enhancements

� SQL Query Engine (SQE) enhancements

– Adaptive Query Processing

– Self-Learning Optimization

– Inline UDF query rewrite

– Logical File on FROM support

� Indexing Advancements

– SQL Select/Omit Indexes

– OmniFind Text Indexes

– EVI Aggregates

� CPYFRMIMPF performance

� SSD & In-Memory Database Enablement

� OmniFind Text Search Server enhancements

Simplified Management

� IBM i Navigator Enhancements

– Progress Monitors – Alter Table, Index Build
– Index Advisor improvements
– Enhanced Generate SQL capability
– Object Folder content saves

Data Intelligence & Interoperability

� DB2 Web Query for System i

– Excel client support

– Microsoft SQL Server adapter

© 2011 IBM Corporation

IBM Power Systems

7

Modern Sophisticated Applications

Simulated Output

Visual Explain of
query providing
data for pie chart

The query behind this panel
contains 4 unions of approximately
20 tables each.

Average response time 5-7 seconds.

© 2011 IBM Corporation

IBM Power Systems

8

Simply put:

� Modernize your database objects

� Use SQL

© 2011 IBM Corporation

IBM Power Systems

9

SQL Philosophy

With high level language record level access:

You tell DB2 what you want, AND how to get it.

With SQL:

You tell DB2 what you want, NOT how to get it.

© 2011 IBM Corporation

IBM Power Systems

10

What is SQL?

�Data Definition Language (DDL)

�Data Manipulation Language (DML)

�Persistent Stored Modules (PSM)

Create
Alter

Objects

Identify
Fetch
Insert

Update
Delete
Data

Define Logic
Process Data

(Programming)

© 2011 IBM Corporation

IBM Power Systems

11

Moving to SQL

Where to begin?

© 2011 IBM Corporation

IBM Power Systems

12

DB2DB2

CREATE TABLE

High

Level

Language
Record Level Access

Structured Query Language (SQL)
Embedded Static, Dynamic

ODBC

JDBC

CLI

PHP

Command Language (CL)

One Database Management System with multiple interfaces

CRTPF

SELECT...

FROM...

DB2 for i Interfaces

UPDATE...

© 2011 IBM Corporation

IBM Power Systems

13

Terminology

IBM i NativeSQL

Schema

Table

View

Index

Row

Column

Library & Journal &
Views

Physical File

Logical File

Keyed Logical File

Record

Field

© 2011 IBM Corporation

IBM Power Systems

14

Moving to SQL

� Change files from native DDS to SQL DDL

� Rewrite existing applications to use SQL

� Develop new applications based on SQL

Moving to SQL can proceed in any of several ways

Where to begin?

They are all valid!

Let’s focus on DDS to DDL

© 2011 IBM Corporation

IBM Power Systems

15

Moving to SQL

� Change files from native DDS to SQL DDL

� Rewrite existing applications to use SQL

� Develop new applications based on SQL

• Identify and Exploit SQL
DDL Enhancements
• Minimizes impacts to
existing applications
• Leverages SQL for
additional features

Moving to SQL can be proceed in any of several ways

© 2011 IBM Corporation

IBM Power Systems

16

Why SQL - Identify and Exploit DDL Enhancements

� Adding new columns takes advantage of data centric capabilities
–Auto-generation fields

• Identity Columns (Primary key)
• Row change TIMESTAMP (optimistic locking, LCFO)
• Sequence objects (Unique keys)

–Implicitly hidden Columns

� Numerous additional table options
–NOT LOGGED, VOLATILE, LIKE, partition tables, field procedures, …

� Additional object types
–Views, MQTs, EVIs, Sequence objects, Global Variables…

� Future enhancements

16

© 2011 IBM Corporation

IBM Power Systems

17

CREATE TABLE (DDL) vs CRTPF (DDS)

CREATE TABLE EMP_MAST (

EMP_MAST_PK FOR COLUMN EM_PK

BIGINT GENERATED BY DEFAULT AS IDENTITY IMPLICITLY HIDDEN
PRIMARY KEY,

EMPNO CHAR(6) UNIQUE,

FIRSTNME VARCHAR(12),MIDINIT CHAR(1), LASTNAME VARCHAR(15),

EMP_PICTURE BLOB(102400) ,

EMP_ROWID ROWID GENERATED ALWAYS,

DL_PICTURE DATALINK(1000) DEFAULT

EM_ROW_CHANGE_TS FOR COLUMN EMROWCHGTS TIMESTAMP
NOT NULL FOR EACH ROW ON UPDATE AS ROW CHANGE
TIMESTAMP IMPLICITLY HIDDEN)

CRTPF FILE(EMPLOYEE) SRCFILE(QDDSSRC)
SRCMBR(EMPLOYEE)

ADDPFM FILE(QDDSSRC) MBR(EMPLOYEE)

--Source Data

A UNIQUE

A R EMPLOYEE

A EMPNO 6

A FIRSTNME 12 VARLEN

A MIDINIT 1

A LASTNAME 15 VARLEN

A K EMPNO

ADDPFCST FILE(EMPLOYEE) TYPE(*PRIKEY) KEY(EMPNO)

No new data types

Only 1 key per definition. Constraints must
be manually added

Requires separate source member

Source member must exist on IBM i to be
compiled

Many new data types and functions

Long names

Multiple constraints defined within statement

Self contained source statement

• store as IBM i source member or PC file

© 2011 IBM Corporation

IBM Power Systems

18

Why SQL - CREATE TABLE Table-level Attributes

� NOT LOGGED INITIALLY clause
– Temporary disable journaling
– Can improve the performance of initial population of work or summary table
– Requires the usage of commitment control

� Table volatility – VOLATILE or NOT VOLATILE (default value)
– Describe to query optimizer on the size fluctuation of table
– VOLATILE influences optimizer to use access method that performs consistently -

regardless of table size
• Good candidate: work tables with rows added & deleted continually

� Media preference for explicit SSD usage
– UNIT SSD clause to recommend DB2 object be placed on SSD
– Best object candidates:

• Large amount of random data access and…
• Data that is read many times, but written less frequently

18

© 2011 IBM Corporation

IBM Power Systems

19

CREATE TABLE (& SQL) Naming Considerations

� SQL Column & Object names have maximum lengths of 128, but many IBM i utilities,
commands and interfaces only support a 10-character length. How does that work?!?!

– System automatically generates a short 10 character name
• First 5 chars with unique 5 digit number

CUSTOMER_MASTER >> CUSTO00001

� Might be different each time a specific table is created, depending on creation order and
what other objects share the same 5 character prefix

� Use IBM i SQL syntax to specify your own short name
– RENAME TABLE (tables & views) & RENAME INDEX
– FOR COLUMN clause for columns
– SPECIFIC clause for procedures, functions

19

© 2011 IBM Corporation

IBM Power Systems

20

CREATE TABLE LIKE

� LIKE clause creates a new table with duplicate column definitions, no data copied
– Closest to column duplication of CPYF CRTFILE(*YES)

• SQL Data copy support: INSERT INTO newtab SELECT * FROM oldtab
– Similar to CRTDUPOBJ DATA(*NO) function, but LIKE does NOT duplicate constraints

& triggers
– When source object is DDS created, all non-SQL attributes are removed

� Parentheses make a difference
– NO Parentheses, duplicates following “extra” column attributes
– CREATE TABLE newtab LIKE oldtab

• Default value, null attribute, column heading & text (ie, LABEL)
• Identity attribute, hidden column attribute, row change attribute

– Parentheses, ignores the “extra” column attributes
CREATE TABLE newtab (LIKE oldtab)

– Copy Options to explicitly control “extra” column attributes
CREATE TABLE newtab LIKE oldtab EXCLUDING COLUMN DEFAULTS
CREATE TABLE newtab (LIKE oldtab INCLUDING IDENTITY COLUMN ATTRIBUTES)

20

© 2011 IBM Corporation

IBM Power Systems

21

CREATE TABLE AS SELECT

� Duplicates column definitions and optionally copy the data
– Similar to CRTDUPOBJ DATA(*YES) and OPNQRYF/CPYFRMQRYF combo

• Constraints & triggers NOT duplicated
– Same copy options available as CREATE TABLE LIKE
– Simplifies creation of work & summary tables
– Can enable the usage of DDS Field Reference files

� Example:
– Field Reference File Usage:

CREATE TABLE customer AS
(SELECT id cust_id, lname cust_lastname, fname cust_firstname,

city cust_city FROM RefFile)
WITH NO DATA

– General Usage:
CREATE TABLE Rpart_summary AS

(SELECT o.year, p.part, SUM(o.quantity) AS total_quantity
FROM orders o, parts p
WHERE o.partkey = p.partkey AND o.year >= 2009 AND p.parttype=‘R’
GROUP BY o.year, p.part) WITH DATA

21

© 2011 IBM Corporation

IBM Power Systems

2222

CREATE TABLE AS (<Materialized Query Table>)

CREATE TABLE EMP_MAST_SUM AS (

SELECT WORKDEPT, SUM(SALARY)
SAL_TOTAL

FROM EMPLOYEE

GROUP BY WORKDEPT

ORDER BY SALARY_TOTAL DESC)

DATA INITIALLY DEFERRED

REFRESH DEFERRED

MAINTAINED BY USER

CRTPF FILE(EMMASTSUM)
SRCFILE(QDDSSRC)
SRCMBR(EMMASTSUM)

ADDPFM FILE(QDDSSRC) MBR(EMMASTSUM)

--Source Data

A R DEPTTOTAL
A WORKDEPT
A SALARY

OPNQRYF FILE(EMPLOYEE)
FORMAT(EMMASTSUM)
GRPFLD(WORKDEPT) MAPFLD
(SAL_TOTAL '%SUM(SALARY)')

CPYFRMQRYF…

Requires CL program for OPNQRYF
and CPYFRMQRYF to do summary
Table must be manually
refreshed/updated

MQT Definition part of DDL
DB2 for i Optimizer is aware of table
Table must be manually
refreshed/updated

© 2011 IBM Corporation

IBM Power Systems

2323

Why SQL - CREATE TABLE AS (<Partitioned Table>)

CREATE TABLE PAYROLL_HIST

(EMPNO INT, FIRSTNAME CHAR(15),

LASTNAME CHAR(15), CHECK_AMT
DEC(9,2),

CHECK_TAX_YEAR SMALLINT)

PARTITION BY RANGE(CHECK_YEAR)

(STARTING FROM (MINVALUE) ENDING AT
(2007) INCLUSIVE,

STARTING FROM (2008) ENDING AT (2008)
INCLUSIVE,

STARTING FROM (2009) ENDING AT
(MAXVALUE)

CRTPF FILE(PRHIST) SRCFILE(QDDSSRC)
SRCMBR(PRHIST) MAXMBRS(n))

ADDPFM FILE(QDDSSRC) MBR(PAYROLLHST)

--Source Data

A R PRHISTR
A EMPNO
A FIRSTNAME
A LASTNAME
A CHECK_AMT
A CHECK_YEAR

ADDPFM FILE(PRHIST) MBR(YEAR2009)

OPNDBF FILE(PRHIST) OPTIONS(*BOTH)
MBR(YEAR2009)

OVRDBF FILE(PRHIST) MBR(YEAR2008)

CLOF FILE(PRHIST)

Requires CL program to select proper member
(programmer responsibility)

Partitions (members) are defined as part of DDL
DB2 for i determines proper partition
Only recommended for tables exceeding 1.7TB
in size or 4.2 billion rows

© 2011 IBM Corporation

IBM Power Systems

24

CREATE VIEW vs CRTLF (non-keyed)

CREATE VIEW
EMPLOYEE_BONUSES_BY_DEPARTMENT_WITHIN
_STATE

AS

SELECT EA.STATE, DM.DEPTNAME, SUM(EM.BONUS)

FROM EMAST EM

JOIN EADDR EA USING (EM_PK)

JOIN DMAST DM ON WRKDPT = DPTNO

GROUP BY EA.STATE, DM.DEPTNAME

CRTLF FILE(EMPLOYEEJ1) SRCFILE(QDDSSRC)
SRCMBR(EMPLOYEEJ1)

--Source Data

A R EMPLOYEEJA JFILE(EMAST EADDR +

A DMAST)

A J JOIN(1 2)

A JFLD(EM_PK EM_PK)

A J JOIN(1 3)

A JFLD(WRKDPT DPTNO)

A STATE

A DEPTNAME

A BPNUS

Full access to advanced query capabilities
of SQL

No support for keying/ordering

Limited Join support

No support for Grouping, Case,
Subqueries, User-Defined functions, …

24

© 2011 IBM Corporation

IBM Power Systems

25

CREATE INDEX vs CRTLF (Keyed)

CREATE INDEX EMP_LASTNAME_DEPT

ON EMP_MAST(WORKDEPT, LASTNAME)

RCDFMT EMPLOYEER1

ADD COLUMNS EMPNO,FIRSTNME,MIDINIT

CREATE ENCODED VECTOR INDEX RegionIX

ON SALES(REGION)

CRTLF FILE(EMPLOYEEL1)
SRCFILE(QDDSSRC) SRCMBR(EMPLOYEEL1)

--Source Data

A R EMPLOYEER1 PFILE(EMPLOYEE)

A WORKDEPT

A LASTNAME

A EMPNO

A FIRSTNME

A MIDINIT

A K WORKDEPT

A K LASTNAME

Encoded Vector Index(EVI) support

Expressions can be used in the definition
of the key columns

Sparse Indexes with WHERE clause
(ie, Select/Omit)

EVI “Instant” Aggregate support

Only Binary Radix Tree structure support –
no EVIs

Limited support for key derivations and
expressions

Smaller default logical page size

25

© 2011 IBM Corporation

IBM Power Systems

26

Why SQL – Example - DB2 i7.1 – Field Procedures

� Field Procedures

– Register a program that is called
anytime a table column is read or
written

– Allows control of both ‘at rest’ and
viewed data

� Column Level Encryption
– Extension of field procedures

– Allows for transparent (no application changes)
encryption of a specific column in a database
table accessed through SQL or native

– Solutions from tool providers including Patrick
Townsend, Linoma Software & nuBridges supply
encryption algorithms

Note:

Be extremely careful of using CHGPF after altering
SQL Table or PF

First
Name

Last
Name

City State Credit
Card#

Megan Jones Minneapolis Minnesota *&^%$*

Casey Smith Ames Iowa $%@^

© 2011 IBM Corporation

IBM Power Systems

27

Why SQL - CREATE INDEX – Expressions & Selection

� SQL key definitions support expressions, functions and operators enabling more usage of
indexes by query optimizer on complex queries

– Fully supported by SQE optimizer
– EXAMPLES:

CREATE INDEX ix_TotalSalary ON employees (Sales + Bonus AS TotalSalary)
CREATE INDEX ix_FullName ON employees (CONCAT(CONCAT(FName,’ ‘), LName))

CREATE ENCODED VECTOR INDEX yearqry ON dates_tab

(YEAR(ORDERDATE), QUARTER(ORDERDATE));

� Great for improving performance of case-insensitive searches

SELECT cust_id, cust_phone FROM customers

WHERE UPPER(company_name) = ‘ACME’

CREATE INDEX ix_uCompName ON customers(UPPER(company_name))

� Sparse indexes – optimizer awareness added with 7.1 release
– EXAMPLE: CREATE INDEX cust_ix1 ON customers(cust_id) WHERE activCust=’Y’

Fast &
Simple

27

© 2011 IBM Corporation

IBM Power Systems

28

Why SQL – Example - CREATE INDEX – Encoded Vector Index

� Complementary indexing technology for boosting performance in analytical query &
reporting environments

– Patented technology that advances traditional bitmapped indexing
– Best fit – columns with low cardinality (type, color, etc)

Example: CREATE ENCODED VECTOR INDEX idx1 ON sales(region)

� Encoded Vector Index (EVI) Aggregate Support (7.1)

CREATE ENCODED VECTOR INDEX idx1 ON sales(region)

INCLUDE (SUM(saleamt), COUNT(*))

CREATE ENCODED VECTOR INDEX idx2

ON sales(territory)

INCLUDE (SUM(saleamt + promoamt))

SELECT territory, SUM(saleamt+promoamt) FROM sales

GROUP by territory

SELECT region, SUM(saleamt) FROM sales GROUP BY region

EVI aggregates
maintained as underlying
table changes

EVI aggregates
maintained as underlying
table changes

28

© 2011 IBM Corporation

IBM Power Systems

29

Why SQL - CREATE SEQUENCE - Sequence Object

� Another DB2 construct that supports the automatic generation of column values
– Viewed as a superset of Identity columns
– Generated values easily shared across tables
– Can support alpha-numeric key generation
– Can create constant sequence to be used as Global DB2 variables (pre 7.1)

� Example:
CREATE SEQUENCE order_seq

START WITH 1 INCREMENT BY 1 NO MAX VALUE

INSERT INTO orders(ordnum,custnum)
VALUES (NEXT VALUE FOR order_seq, 123)

VALUES NEXT VALUE FOR order_seq INTO :hostvar

UPDATE orders SET ordnum = :hostvar
WHERE custnum = 123

29

© 2011 IBM Corporation

IBM Power Systems

30

CREATE SEQUENCE s1 CACHE 20 NO ORDER

Job1: NEXT VALUE FOR s1 => VALUE = 1

Job 2: NEXT VALUE FOR s1 => VALUE = 21

Job 1: NEXT VALUE FOR s1 => VALUE = 2

Job 1: NEXT VALUE FOR s1 => VALUE = 3

Job 2: NEXT VALUE FOR s1 => VALUE = 22

CREATE SEQUENCE s1 NO CACHE ORDER

Job1: NEXT VALUE FOR s1 => VALUE = 1

Job 2: NEXT VALUE FOR s1 => VALUE = 2

Job 1: NEXT VALUE FOR s1 => VALUE = 3

Job 1: NEXT VALUE FOR s1 => VALUE = 4

Job 2: NEXT VALUE FOR s1 => VALUE = 5

CREATE SEQUENCE - Sequence Object

� Sequence values can be used to generate non-numeric key
CREATE SEQUENCE s START WITH 1001; ...

SET alphakey = 'N'||CAST(NEXT VALUE FOR s AS CHAR(4))

� Customizable Sequence Attributes
– START WITH & INCREMENT BY

– MINVALUE & MAXVALUE

– CYCLE & NO CYCLE

– CACHE & NO CACHE - To improve performance, DB2 allocates a block of sequence values at
the job/connection level.

– ORDER & NO ORDER - ORDER ensures that values are returned in the actual order that they
are requested independent of the job/connection. NO ORDER is the default. ORDER also
disables caching.

� Sequence attributes can be changed with the ALTER SEQUENCE statement

30

© 2011 IBM Corporation

IBM Power Systems

31

Why SQL - Identity Column

� Identity Column Attribute
– Attribute that can be added to any “whole” numeric columns

– Not guaranteed to be unique - primary key or unique index must be defined

– Only available for SQL tables, BUT identity column value generated for non-SQL

interfaces (eg, RPG)

CREATE TABLE emp(empno INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 10 , INCREMENT BY 10),

name CHAR(30), dept# CHAR(4))

INSERT INTO employee(name,dept) VALUES('MIKE','503A') or…
INSERT INTO employee VALUES(DEFAULT,'MIKE', '503A')

31

© 2011 IBM Corporation

IBM Power Systems

32

Why SQL - CREATE VARIABLE – SQL Global Variables

� Enables simpler sharing of values between SQL statements and SQL
objects (Triggers, Views, etc) across the life of a job/database connection

� Example #1 – Cache User Information

CREATE VARIABLE gvdept INTEGER DEFAULT

(SELECT deptno FROM employee WHERE empuserID = USER);

CREATE VIEW filtered_employee AS (

SELECT firstname, lastname, phoneno FROM employee WHERE deptno = gvdept);

…

SELECT firstname, phoneno FROM filtered_employee;

32

© 2011 IBM Corporation

IBM Power Systems

33

CREATE VARIABLE – SQL Global Variables

� Example #2 – Conditional Trigger Behavior
CREATE VARIABLE batch_run CHAR(1);

CREATE TRIGGER track_expenses AFTER INSERT ON expenses

REFERENCING NEW AS n FOR EACH ROW

WHEN (batch_run='N')

BEGIN

DECLARE emplname CHAR(30);

SET emplname = (SELECT lastname FROM employee WHERE empid=n.empno);

IF n.totalamount < 10000 THEN

INSERT INTO travel_audit

VALUES(n.empno, emplname, n.deptno, n.totalamount, n.enddate);

ELSE

SIGNAL SQLSTATE '38001‘ SET MESSAGE_TEXT=‘Exceeded Maximum’;

END IF;

END

…

VALUES ‘Y’ INTO batch_run;

…

33

© 2011 IBM Corporation

IBM Systems Lab Services and Training

34

Moving DDL into an existing environment

© 2011 IBM Corporation

IBM Systems Lab Services and Training

35

Transparent Migration to SQL – Options

© 2011 IBM Corporation

IBM Systems Lab Services and Training

36

Transparent Migration to SQL – Options…

© 2011 IBM Corporation

IBM Systems Lab Services and Training

3737

Beware the Format Level ID!

� A database object contains a Record
Format Level Identifier (RID)

– The RID is captured within a program
object using Record Level Access
(native)

– Note: SQL does not care about RID

� The RID establishes integrity between
the file and programs using native
access

– When the RID changes (i.e. column
added or dropped) the program will
break unless:

• The program is created with Level Check
= *NO (Not recommended)

• The program is recreated

Can we handle RID AND leverage new DDL support?

Note: SQL does not
need the RID. It
validates at
execution that the
needed columns
exist

© 2011 IBM Corporation

IBM Power Systems

38

CREATE TABLE Table-level Attributes

� RCDFMT keyword to alter default SQL behavior of having record format
name be identical to the object name

–RPG requires record format name to be different
–Example:

38

CREATE TABLE dbtest/customer_master
(customer_name FOR COLUMN cusnam CHAR(20),
customer_city FOR COLUMN cuscty CHAR(40))

RCDFMT cmfmt

© 2011 IBM Corporation

IBM Systems Lab Services and Training

39

Record Formats

� The format of the columns associated
with a DDS file

� Not required for SQL
– RCDFMT added to CREATE

TABLE, VIEW and INDEX DDL for
compatibility purposes

� Typically used for impact analysis
– How many programs need to be

changed if a column in record
format 1 is changed?

� Used in conjunction with IBM i
DSPPGMREF command

� Rational, combined with DB2 for i
system catalogs provide equivalent
support

39

Infosphere Data Architect (formerly RDA)

© 2011 IBM Corporation

IBM Systems Lab Services and Training

4040

Adding New Columns to Re-engineered Table

� Surrogate LF methodology enables
converted SQL table to be enhanced
with new features…

WITHOUT changing ID of Surrogate!
– New columns can be added before or

after the original columns
• Add Identity columns
• Add Implicitly Hidden columns

– Original column definitions can be altered Timestamps
,

memberkey,
etc.

New
columns

Timestamp,
member,

New

Primary
Key

TABLE1

Timestamps
,

memberkey,
etc.

New
columns

Timestamp,
member,

Timestamps
,

memberkey,
etc.

New
columns

Timestamp,
member,

New

Primary
Key

New

Primary
Key

TABLE1

PGM3
PF1FMT PGM2

PF1FMT PGM1
PF1FMT

Original DDS
PF Format

� Original PF1

Format

PF1
Surrogate

File

PGM3
PF1FMT PGM2

PF1FMT PGM1
PF1FMT

Original DDS
PF Format

� Original PF1

Format
� Original PF1

Format

PF1
Surrogate

File

Measure

twice,
cut once

Measure

twice,
cut once

© 2011 IBM Corporation

IBM Systems Lab Services and Training

41

Creating and sharing the “surrogate” file

� Reengineering DDS PF to DDL PF results in
format identifiers being changed

– HLL programs accessing the DDL PF will
receive a “level check” exception message.

– Only solutions prior to 5.4
• recompile the program or
• ignore the exception (not recommended).

� A surrogate file preserves the original DDS PF
format.

– Allows new columns to be added to DDL PF
– FORMAT keyword used to share surrogate

format
• Prevents level check IDs for programs

accessing original PF or LFs sharing
format.

� This is the “best” method for avoiding format id
changes

PGM1
ORDHST

ORDHSTR
FMT123

ORDHST
ORDHSTR

FMT123

ORD_HST
ORD_HST
FMT321

Reverse
Engineer
DDS to
DDL

IOLevel
Check
Error

PGM1
ORDHST

ORDHSTR
FMT123

ORDHST
ORDHSTR
FORMAT

(ORDHSTR)

ORDHST
ORDHSTR

FMT123

ORD_HST
ORD_HST
FMT321

ORDHSTR
ORDHSTR

FMT123

IO

Reverse
Engineer
DDS to
DDL

Transform
DDS PF to
Surrogate
PF and LF

IO

41

© 2011 IBM Corporation

IBM Systems Lab Services and Training

42

Existing PF - INVENTORY
A R INVFMTR

A ITEM 15A

A ORDER 10A

A SUPPLY 15A

A QTY 5P

A QTYDUE 5P

A K ITEM

Existing LF - INVLF
A R INVFMTR PFILE(INVENTORY)

A K ORDER

A K ITEM

Surrogate LF - INVENTORY
A R INVFMTR PFILE(SQ_INVENT)

A ITEM

A ORDER

A SUPPLY

A QTY

A QTYDUE

A K ITEM

Modified Existing LF - INVLF
A R INVFMTR PFILE(SQ_INVENT)

A FORMAT(INVENTORY)

A K ORDER

A K ITEM

Transparent SQL Migration - Example

� Converted SQL Table –
CREATE TABLE sq_invent (

item CHAR(15),

order CHAR(10),

supply CHAR(15),

qty DECIMAL(5,0),

qtydue DECIMAL (5,0))

© 2011 IBM Corporation

IBM Power Systems

43

CREATE TABLE (& SQL) Naming Considerations

� Short & Long Name Co-existence Example
– Specify the short name at creation:

CREATE TABLE dbtest/cusmst
(customer_name FOR COLUMN cusnam CHAR(20),
customer_city FOR COLUMN cuscty CHAR(40))

– Specify a long name for existing short-name:

RENAME TABLE dbtest/cusmst TO customer_master
FOR SYSTEM NAME cusmst

� If long name specified on SQL Table definition, can also add/control the short name after
table created:

RENAME TABLE dbtest/customer_master TO SYSTEM NAME cusmst

� RCDFMT keyword to alter default SQL behavior
– RPG requires record format name to be different

43

CREATE TABLE dbtest/customer_master
(customer_name FOR COLUMN cusnam CHAR(20),
customer_city FOR COLUMN cuscty CHAR(40))

RCDFMT cmfmt

© 2011 IBM Corporation

IBM Power Systems

44

CREATE INDEX – Logical File Equivalency

� SQL indexes (& views) can be used by traditional native record-level access
interfaces

– By default, SQL indexes include all columns in Logical File record format
– ADD clause provides ability to simulate logical file definitions

• ADD ALL COLUMNS (default)
• ADD KEYS ONLY
• ADD col-name1, …

– ADD must be used in conjunction with RCDFMT keyword
– SQL field ordering & format level identifier may be different than equivalent LF

CREATE INDEX EMP_LASTNAME_DEPT

ON EMP_MAST(WORKDEPT, LASTNAME)

RCDFMT employeer1

ADD COLUMNS empno, firstname, middle_initial

44

© 2011 IBM Corporation

IBM Power Systems

4545

Enhanced DDL TABLE and Surrogate DDS LF

CREATE TABLE CUST_MAST 1 (

CUST_MAST_ID FOR COLUMN 2

CUSTMASTID BIGINT GENERATED BY
DEFAULT AS IDENTITY PRIMARY KEY,

CUSTKEY INTEGER NOT NULL UNIQUE 3,

CUSTOMER CHAR(25) NOT NULL ,

ADDRESS CHAR(40) NOT NULL ,

CITY CHAR(30) NOT NULL ,

STATE CHAR(2) NOT NULL ,

ZIPCODE NUMERIC(10, 0) NOT NULL ,

PHONE CHAR(15) NOT NULL ,

CM_LAST_CHANGED FOR COLUMN
CMLASTCHG TIMESTAMP NOT NULL

FOR EACH ROW ON UPDATE

AS ROW CHANGE TIMESTAMP);

CRTLF CUSTMAST

A R CUSTMASTR PFILE(CUST_MAST 1)

A CUSTKEY R

A CUSTOMER R

A ADDRESS R

A CITY R

A STATE R

A ZIPCODE R

A PHONE R

A K CUSTKEY 3

1.
Notes

1. Original PF is now LF and references new SQL table CUST_MAST

2. New SQL only columns are not part of surrogate file

3. CUSTKEY is now unique key constraint (if appropriate)

4. FIELDREF no longer used, R in REF column ignored for LFs

© 2011 IBM Corporation

IBM Power Systems

4646

Enhanced DDL TABLE and Surrogate DDS PF

CREATE TABLE CUST_MAST (

CUST_MAST_ID FOR COLUMN CUSTMASTID
BIGINT GENERATED BY DEFAULT AS
IDENTITY PRIMARY KEY,

CUSTKEY INTEGER NOT NULL UNIQUE ,

CUSTOMER CHAR(25) NOT NULL ,

ADDRESS CHAR(40) NOT NULL ,

CITY CHAR(30) NOT NULL ,

STATE CHAR(2) NOT NULL ,

ZIPCODE NUMERIC(10, 0) NOT NULL ,

PHONE CHAR(15) NOT NULL ,

CM_LAST_CHANGED FOR COLUMN
CMLASTCHG TIMESTAMP NOT NULL

FOR EACH ROW ON UPDATE

AS ROW CHANGE TIMESTAMP);

SELECT * FROM CUSTMAST1;

CREATE VIEW CUSTMAST2 AS SELECT *
FROM CUST_MAST;

CRTPF FILE(CUSTMASTSF) MBR(*NONE)3

A REF(FIELDREF)

A R CUSTMASTR

A CUSTKEY R

A CUSTOMER R

A ADDRESS R

A CITY R

A STATE R

A ZIPCODE R

A PHONE R

1.
Notes

1. Current PF is being referenced by SQL

2. Original PF becomes SQL View

3. PF created with no members-it is used for format references only

© 2011 IBM Corporation

IBM Systems Lab Services and Training

4747

Sharing the Format

� For each logical file which shared the physical file format (FMT123):
– PFILE now points to SQL table (FMT321)
– FORMAT keyword specifies surrogate (FMT123)

� Reasons a format will not be shared:
– DDS Join Logical Files have unique format IDs
– Existing DDS LF has unique format name

ORDHSTL2
ORDHSTR
FORMAT

(ORDHSTR)

PGM1
ORDHST

ORDHSTR
FMT123

PGM1
ORDHST

ORDHSTR
FMT123

ORDHSTL1
ORDHSTR
FORMAT

(ORDHSTR)
PGM1

ORDHST
ORDHSTR

FMT123

ORDHST
ORDHSTR
FORMAT

(ORDHSTR)

ORD_HST
ORD_HST
FMT321

ORDHSTR
ORDHSTR

FMT123

FORMAT
ORDHSTR
is Shared

IO

PGM2

PGM3 ORDHSTL2
ORDHSTR
FORMAT

(ORDHSTR)

PGM1
ORDHST

ORDHSTR
FMT123

PGM1
ORDHST

ORDHSTR
FMT123

ORDHSTL1
ORDHSTR
FORMAT

(ORDHSTR)
PGM1

ORDHST
ORDHSTR

FMT123

ORDHST
ORDHSTR
FORMAT

(ORDHSTR)

ORD_HST
ORD_HST
FMT321

ORDHSTR
ORDHSTR

FMT123

FORMAT
ORDHSTR
is Shared

IO

PGM2

PGM3

© 2011 IBM Corporation

IBM Power Systems

48

Updated LFs Sharing Surrogate LF Format

CRTLF CUSTMAST2

A* REF(FIELDREF)

A R CUSTMASTR2 PFILE(CUST_MAST 1)

A CUSTKEY R

A CUSTOMER R

A ADDRESS R

A CITY R

A STATE R

A ZIPCODE R

A PHONE R

A K CUSTKEY

CRTLF CUSTMASTL1

A* R CUSTMASTR PFILE(CUSTMAST)

A R CUSTMASTR2 PFILE(CUST_MAST1)

A FORMAT(CUSTMAST2)

A K CUSTOMER

CRTLF CUSTMASTL2

A* R CUSTMASTR PFILE(CUSTMAST)

A R CUSTMASTR2 PFILE(CUST_MAST1)

A FORMAT(CUSTMAST2)

A K STATE

A K CITY

A K CUSTOMER

1.

Notes
1. All DDS LFs are built over the new SQL table CUST_MAST
2. The format CUSTMASTR is part of the surrogate LF CUSTMAST

48

© 2011 IBM Corporation

IBM Power Systems

4949

Updated LFs Sharing Surrogate PF Format

CRTPF FILE(CUSTMASTSF) MBR(*NONE)

A REF(FIELDREF)

A R CUSTMASTR2

A CUSTKEY R

A CUSTOMER R

A ADDRESS R

A CITY R

A STATE R

A ZIPCODE R

A PHONE R

CRTLF CUSTMASTL1

A* R CUSTMASTR PFILE(CUSTMAST)

A R CUSTMASTR2 PFILE(CUST_MAST1)

A FORMAT(CUSTMASTSF2)

A K CUSTOMER

CRTLF CUSTMASTL2

A* R CUSTMASTR PFILE(CUSTMAST)

A R CUSTMASTR2 PFILE(CUST_MAST1)

A FORMAT(CUSTMASTSF2)

A K STATE

A K CITY

A K CUSTOMER

1.
Notes

1. All DDS LFs are built over the new SQL table CUST_MAST

2. The format CUSTMASTR is part of the surrogate file CUSTMASTSF

© 2011 IBM Corporation

IBM Systems Lab Services and Training

50

Transparent SQL Migration - Considerations

� Creating a Surrogate LF can be challenging for certain Physical File (PF) types
– Multi-member physical files

• Require usage of partitioned tables
• “Modernized” partitioned tables not advised until 7.1 when identity columns and RI

supported for partitioned tables
• Partitioned tables only support 256 partitions (members)

– Usage of ALWNULL keyword may cause non-compatible record formats
– Source file on CLRPFM or CPYF commands – most likely these are work files

� Not all files need to be converted to SQL DDL – especially work files!!!

� SQL Statements that reference PF can have different performance behavior
– Surrogate LF conversion will cause SQL statements to reference an LF instead of PF
– Prior to 7.1, all SQL statements referencing LF processed by Classic Query Engine (CQE)

• IBM i 6.1 release now has Test PTF to enable simple LF references to be processed
by SQL Query Engine (SQE)

– NET: Upgrade to a newer release!!!

� DB2 for i SQL Modernization Workshop

ibm.com/systems/i/support/itc/educ/lsdb2mod.html

© 2011 IBM Corporation

IBM Systems Lab Services and Training

51

DDS to SQL Conversion Tool

Transparent SQL Migration - Tooling

� System i Navigator Generate SQL Task (QSQGNDDL API)
– Useful in converting object definitions from DDS to SQL
– Supports physical & logical files

• Not all DDS features can be converted, tool will convert as much as possible and generate
warnings for unconvertible options (e.g., EDTCDE)

• Logical files converted to SQL Views
• SQL Field Reference File support not used

– Can convert a single object or
a group of objects

– Output can be edited &
saved directly into source
file members

© 2011 IBM Corporation

IBM Systems Lab Services and Training

52

Transparent SQL Migration - Tooling
� XCase for System i tooling that automates and manages this migration process

(www.xcaseforsystemi.com)
– Free Diagnostic Modernization download
– Data modeling tool also available

© 2011 IBM Corporation

IBM Power Systems

53

Reengineering Surrogate Considerations

Non-SQL access

� Referencing PF directly can hinder leveraging new DDS features
– Future changes may result in unnecessary recompiles

SQL access

� Pre 7.1 only
– Avoid referencing surrogate logical file

• Prevents SQE access, requires CQE
• Performance and functionality can suffer

– rewrite to reference new physical table

� The SQE optimizer can use DDS LFs as of 7.1

53

© 2011 IBM Corporation

IBM Power Systems

Beyond DDS conversion

© 2011 IBM Corporation

IBM Power Systems

55

Moving to SQL

� Change files from native DDS to SQL DDL

� Rewrite existing applications to use SQL

� Develop new applications based on SQL

• Leverage the power of
SQL
• Open up new ways to
access data

Moving to SQL can be proceed in any of several ways

© 2011 IBM Corporation

IBM Power Systems

56

Setting the stage

� The art and science of writing and deploying SQL is different than traditional record
level access

– Writing SQL like native access is the wrong approach!

� Proper training, support and governance is required

� A suitable SQL migration and use strategy must be defined and implemented

� Modernization requires modern tools and methods

© 2011 IBM Corporation

IBM Power Systems

57

Setting the stage….

Examples. SQL:

� Is answer set oriented, not record oriented
– Worry about the answer set you want, not the steps to get it

� Is meant to join tables
– Don’t chain them in the application program!

� Can help hide complexity
– Views can simplify definitions for application developers

� Lets application developers focus on the application
– And database developer focus on the database

� Has its own very rich programming language
– With procedures, functions and triggers

.

.

.

SQL is a language

Like any language,
you have to learn

the syntax, proper usage, and coding best practices.

You must learn the science, and develop the art.

SQL is a language

Like any language,
you have to learn

the syntax, proper usage, and coding best practices.

You must learn the science, and develop the art.

© 2011 IBM Corporation

IBM Power Systems

58

SQL DML example, join

SELECT t.year,t.month,i.orderdt,c.country,c.cust

p.part,s.supplier,i.quantity,i.revenue

FROM item_fact i

INNER JOIN part_dim p ON (i.partid = p.partid)

INNER JOIN time_dim t ON (i.orderdt = t.datekey)

INNER JOIN cust_dim c ON (i.custid = c.custid)

INNER JOIN supp_dim s ON (i.suppid = s.suppid)

WHERE t.year > 2005

© 2011 IBM Corporation

IBM Power Systems

59

SQL DDL/DMl example, hiding complexity with a view

CREATE VIEW JoinView(orderyear, ordermonth, orderdate, country,

last_name, part_name, supplier_name, quantity, revenue)

AS SELECT t.year,t.month,i.orderdt,c.country,c.cust

p.part,s.supplier,i.quantity,i.revenue

FROM item_fact i

INNER JOIN part_dim p ON (i.partid = p.partid)

INNER JOIN time_dim t ON (i.orderdt = t.datekey)

INNER JOIN cust_dim c ON (i.custid = c.custid)

INNER JOIN supp_dim s ON (i.suppid = s.suppid)

WHERE t.year > 2005

SELECT * FROM JoinView

WHERE orderyear = 2009 AND ordermonth IN (10,11,12)

Simplification!

© 2011 IBM Corporation

IBM Power Systems

60

create procedure justice_for_all(out o_number_of_raises int, out o_cost_of_raises decimal(9,2))

language sql

proc_body:

begin

declare v_avg_tenure int;

declare v_avg_compensation decimal(9,2);

declare v_number_of_raises int;

declare v_cost_of_raises decimal(9,2);

set v_avg_tenure = 0;

set v_avg_compensation = 0.0;

select avg(year(current_timestamp) - year(hiredate)), decimal(avg(salary + bonus +comm),9,2)

into v_avg_tenure, v_avg_compensation

from employee;

set v_number_of_raises = 0;

set v_cost_of_raises = 0.0;

for_loop:

FOR each_row AS c1 CURSOR FOR

SELECT year(current_timestamp) - year(hiredate) as tenure,

salary+ bonus + comm as compensation

FROM employee

DO

IF tenure > v_avg_tenure and compensation < v_avg_compensation

THEN

UPDATE employee SET salary = salary + (v_avg_compensation - compensation)

WHERE CURRENT OF c1;

SET v_number_of_raises = v_number_of_raises + 1;

SET v_cost_of_raises = v_cost_of_raises + (v_avg_compensation - compensation);

END IF;

END FOR;

SET o_number_of_raises = v_number_of_raises;

SET o_cost_of_raises =v_cost_of_raises;

END proc_body;

SQL Example, SQL procedure

© 2011 IBM Corporation

IBM Power Systems

61

� Migrating legacy databases requires planning plus additional knowledge and skills
– Understanding query optimization
– Relational database design knowledge
– Acquire and use good tooling

� You should have good business reasons for migrating
– New or changing requirements
– Need for enhanced features and functions
– New applications accessing legacy data

� Start small, get some experience
– Identify a pilot application which would benefit from modernization
– Get educated on SQL and DB2 for i

� Performance improvement is a benefit, not the main reason for reengineering

Practical advise

© 2011 IBM Corporation

IBM Power Systems

62

IBM i is now on developerWorks!!

ibm.com/developerworks

© 2011 IBM Corporation

IBM Power Systems

63

Introducing:

developerWorks for IBM i!
IBM i technology information wiki
� Launched as part of the dW “i zone” in April, 2011

Wiki URL: www.ibm.com/developerworks/ibmi/techupdates
DB2 URL: www.ibm.com/developerworks/ibmi/techupdates/db2

� Centralized location for communicating DB2 for i
enhancements made in between major IBM i
releases

� Organized by subject matter and category of
enhancement

� Notify me of Page Changes option

� comment or recommend specific pages

� Info Center remains the site for technical
documentation, however, sometimes the
information will appear on dW first

© 2011 IBM Corporation

IBM Power Systems

64

On the Web

developerWorksDB2 URL:

� www.ibm.com/developerworks/ibmi/techupdates/db2

DB2 for i Home Page

� http://www.ibm.com/systems/i/software/db2/

System i Advantages

� http://www-1.ibm.com/systems/i/advantages/

System i Access

� http://www.ibm.com/systems/i/access/

DB2 for i Java

� http://www.ibm.com/systems/i/software/db2/javadb2.html

Education and Publications

� http://www.ibm.com/systems/i/ - Click on Education

� http://publib.boulder.ibm.com/iseries/

Newsgroups and Forums

� comp.databases.ibm-db2

� comp.sys.ibm.as400.misc groups

Questions can be sent to:

� rchudb@us.ibm.com

© 2011 IBM Corporation

IBM Power Systems

65

© 2011 IBM Corporation

IBM Power Systems

66

IBM DB2 for i Consulting and Services

� Database modernization

� DB2 WebQuery

� Database design, features and functions

� DB2 SQL performance analysis and tuning

� Data warehousing and Business Intelligence

� DB2 for i education and training

Contact: Mike Cain mcain@us.ibm.com

IBM Systems and Technology Group

Rochester, MN USA

è Need help using the latest DB2 for i
technologies?

è Are you getting the most out DB2 for i?

SLOW

© 2011 IBM Corporation

IBM Power Systems

67

An Example of Why Modernize

© 2011 IBM Corporation

IBM Power Systems

68

Store and Manage Documents in DB2

DB2

<booking unitCharge="50" units="2"
currency="USD"
status="confirmed">

<item>
<room hotelName="White Palace"

type="suite"
bookedFrom="2011-05-25"
bookedTo="2011-05-29“ />

Row ID XML Timestamp

Integrated XML support (7.1)

• New XML column type

• Store document in DB2

• Manage and manipulate XML

• Search and reference XML documents

• SQL only

M
odernize!

© 2011 IBM Corporation

IBM Power Systems

69

IBM OmniFind Text Search Server for DB2 for i

� New IBM i product offering: 5733-OMF
– No-charge offering
– Requires IBM i 6.1 or greater

� Delivers common DB2 Family text search technology
– Advanced, linguistic high-speed searches
– Support enabled for any character-based column
– Search technology also supports Rich Text document formats

• Example: LOB columns containing XML, PDF or Microsoft® Word documents
• IFS documents can be indexed with extra programming

– Includes support for 26 different languages
– SQL only

• CONTAINS and SCORE functions

