3/27/2017

Advanced API

Paul Roy

API

e Agenda
— Définition
— Documentation
— Tips and tools
¢ IFS
* User spaces...
¢ Pointers
* SQL
e Lists Asynch

API

* Definition
— Application programming interface
— It’s just a program, a procedure, a function that
allows an application program to interact with
operating system functions
¢ Execute a system command

* Retrieve a system information
— Status, value, etc...

API

¢ Families of API

— Simple interactions with i5/0S
* RTV* commands
* QCMDEXC
¢ DSP* commands with OUTPUT(*FILE)
* DTAQ operations
— API for system Administration
* List objects
* Spooled files

API

— C Library
 IFS: Open(), read(), write(), close(), readdir(), etc...
¢ MATH: abs(), sin(), cos(),..
* SOCKET: listen(), accept(), gethostbyname(), gsk..

— Security: Krb5... Idap... eim*

— ENCRYPT : QC3ENCDT, QC3DECDT,...
— HA : QcstAddClusterNodeEntry ,..

— DB: QDBRTVFD..

— MI: (all Ml instructions) ADDN, BITPERM, CMPNV,
CPYBLA ...

API

Documentation
e Start from knowledge center/Api Finder

https: ibm.com, ibm_i_73/apifinder; htm
« the api finder page has +/- 5000 Api’s
e System APl programming manual
¢ Many examples on the web
www.midrange.com - www.think400.dk -
www.scottklement.com

Google is your friend...

3/27/2017

IFS API

e Example 1 : PURGEDIR

— Delete all stream files older than x days in one
directory and all sub directories.

Featured IFS Api’s from the C Library:
- Opendir() Readdir() closedir() stat()
e Example 2 : COPY a source file to the IFS

- create a .txt ascii stream file to the IFS.

Open write close

User space

* A user space is a basic i5/0S object.

¢ |t can be created and accessed with API
— QUSCRTUS
— QUSRTVUS
— QUSCHGUS
— QUSDLTUS

— QUSPTRUS returns a pointer to the content of the

userspace. So it is very fast...

User Spaces

¢ Many list API can store data in user spaces
* We can access them with pointers

List Space format

User Space Format—Example
Following is an example of the format of a user space. This example does not
contain all of the fields in the fixed portion of a user space.

User Space Fixed Tocations
—————————— in the user space

XXXX ———— Offset to data section
XXXX ————> Number of 1ist entries
XXXX ————» Size of each entry

2nd entry —|
Variable Tocations in the
st entry — user space
AAAAABBBBCCCDDDEEAAAABB |— List of entries
BBBCCCODDEEAAAABBBBBCCD
DDDEEAAAABBBBCCCDDDEE. .
Logic Flow of Processing a List of Entries
When you process a list containing multiple entries, the logic flow looks as follows: Header.
a9

It ia important from an upward compatihilty viewpint to uae the offset, length of
ach entry. and the number of entries rather than hard coding the values in your.
program

6t-yte User Area

| toput Parameter section

+48] Size of Generic Header |

Generic Header ’—‘

+6C| Offset to Input Parameter Section

+78| Input Parameter Section Size

73] Offset to Header Saction————— | Header Section
+78] Heater Section Size

+7c| Offset to List Data Section

59| List Data Sction e
1| Mmper or Lst Entries : :
58] iz of Exch ntry —
st et of st in the user space

+50| Country 10
List Data Section

+93] Language 10
Ll entry 1
495 Subsetted Tist indicator

Entry 2

+ca| AT entry point name
Entry 3

Last Entry

Figure 5-1. General Data Structure

3/27/2017

List API

List Objects That Adopt Owner Authority API—Example

Parameters

Required Parameter Group

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 User Input Char(10)
4 Object type Input Char(10)
5 Continuation handie Input Char(20)
6 Ermor code 1o Char(*)

The List Objects That Adopt Owner Authority (QSYLOBJP) API puts a list of
objects that adopt an object owner's authority into a user space.

This API provides information similar to that provided by the Display Program Adopt
(DSPPGMADP) command.

User Space Variables
The following tables describe the order and format of the data retued in the user
space. For detailed descriptions of the fields in the tables, see “Field Descriptions”
on page 5-15.

Input Parameter Section

Offset
Dec | Hex | Type Field
0 0 | cHar(i0) User space name specified
10 | oA | cHar(D) User space library name specified
20 | 14 | cHAR@®) Format name
28 | 1c | CHAR(10) User name specified
38 | 26 [cHAR(i0) Object type
48 | 30 | cHAr@) Continuation handle

Header Section

Offset
Dec | Hex | Type Field

[0 | cHAR(i0) User name

10 | oA | cHARE0) Continuation handle

OBJP0100 Format

Offset
Dec | Hex | Type Field
0 0 | cHAR(1D) Object name
10 | 0A | CHAR(10) Library name
20 14 | CHAR(10) Object type
30 1E CHAR(1) Object in use

©OBJP0200 Format

Offset

Dec | Hex | Type Field

0 0 | cHAR(1D) Object name
10 0A | cHAR(10) Library name
20 14 | CHAR(10) Object type

30 | 1E | CHAR(1) Object in use
31 1F CHAR(10) Attribute

a1 29 | cHAR(50) Text description

User space

e Example 3
Get system status information (QUSRTVUS)
e Example 4
— change library owner.
e Example 5
— List spooled files

Process Open List API

¢ Asynchronous list processing

¢ These i5/0S list APIs can improve perceived
performance when they create lists.

* The APIs create and make available to the caller a
partial listing of the total set of files, messages, or
objects. This list is immediately available to be
acted upon, while the remainder of the list is
being created. The user does not have to wait for
the entire list to be created. Following is a
description of the APIs and how they work
together.

Process Open List API

¢ these APIs builds a list of the appropriate type
and returns the number of records requested
by the caller of the API. Also returned from
the list building program is a request handle
associated with that particular list. This
request handle can be used on subsequent
calls to the Get List Entry (QGYGTLE) API to get
more records from the list. The request handle
is valid until the Close List (QGYCLST) APl is
used to close the list.

3/27/2017

Process Open List API

The request handle is also used as input to the following APIs when
you need to find a specific entry in the list:

¢ Find Entry Number in List (QGYFNDE) API, which returns the
number of the entry in a list of information for a given key value.
This API can be used with lists that have been created by either the
QGYOLOBJ or QGYOLSPL API.

¢ Find Entry Number in Message List (QGYFNDME) API, which returns
the number of the entry in the list of message information for a
given key value. This API can be used with lists that have been
created by either the QGYOLMSG or QGYOLJBL API.

¢ Find Field Numbers in List (QGYFNDF) API, which returns the
number of the entry in a list of information and the value of that
entry whenever the value of that field changes.

Example

¢ Spooled file management cleanup application
— Tables with retention info by Output Queue/Printer File

— CREATE TABLE PSYSOUTQ
« PSOQNM CHAR(10)
« PSOQLB CHAR(10)
« PSDAYS DEC(5 , 0))
— CREATE TABLE PSYSPRTF
+ PSOQNM CHAR(10)
« PSOQLB CHAR(10)
« PSPRTF CHAR(10)
« PRDAYS DEC(5, 0)

Example

— List all outq in a userspace QUSLOB)J
— Read the user space
— For each entry /outq

* Get retention days for the queue

* Open a list of Spooled files
— Check if known to get special retention/file
— If expired : Run DLTSPLF
— Get Next Entry

SaL

¢ Many system services are now available
through SQL. (see SQL Update workshop)

e SQL is very popular

e Usually a very simpler access to the function
than API programming

See NETSTAT example

¢ Close List
SQL services MI Api
SELECT * * Machine instructions are available as
FROM procedure in ILE environment

TABLE(QSYS2.0UTPUT_QUEUE_ENTRIES
(QGPL, ‘QPRINT, *YES") S
ORDER BY SIZE DESC

e All Ml instructions can be inserted in ILE
languages (COBOL, RPG, CL, C, ...)

* Usually for a special system usage or a
performance problem.

3/27/2017

MI example

¢ MDS5 calculation is used as a checksum to
verify the integrity of data. (passwords, etc..)

e The Ml instruction CIPHER provide the
function...

Cipher (CIPHER)

Op Code (Hex) Operand 1 Operand 2 Operand 3
10EF Receiver Controls Source

Operand 1: Space pointer data object|
Operand 2: Character(32, 42, 96) variable scalar.

Operand 3: Space pointer data object.

Bound program access

Built-in number for CIPHER is 176.

CIPHER (
receiver : address of space pointer(16)
controls : address
saurce address of space pointer(16)

Description: The cipher operation specified in the controls (operand 2) is performed on the string value
addressed by the source (operand 3). The result is placed into the string addressed by the receiver
(operand 1).

The controls operand must be a character variable scalar. It specifies information to be used to control the
cipher operation. The common header of the controls operand has the following format.

Offset
Dec Hex Field Name Data Type and Length
0 0 Function identifier Char(2)

The controls operand must be a character variable scalar. It specifies information to be used to control the
cipher operation. The common header of the controls operand has the following format.

Offset
Dec Hex Field Name Data Type and Length
0 0 Function identifier Char(2)
‘The function identifier must be hex 0002, hex 0005, hex
g 08, hex 0010, hex 0011, hex 0013, or hex
0015 If not, a template value invalid (hex 3801)
exception is signale
2 2 — End —

entifier specifies the cryptographic service provider (CSP) for the cipher operation. It
must specify hex 0002, hex 0005, hex 0007, hex 0008, hex 0010, hex 0011, hex 0013, or hex 0015. Any other
value causes a femplate value invalid (hex 3801) exception to be signaled.

Hex 0002 The Machine CSP licensed internal code is to be used for a
encryption operation using the ANSI (American
indards Institute) DEA (Data Encryption Algorithm)
The Machine CSP licensed internal code is to be used to perform
a one-way hash operation. The returned output may be a hash
value or an HMAC (Hash Message Authentication Code) value.
The supported hash algorithms are MD5 (Message Digest) and
SHA-1 (Secure Hash Algorithm).
Hex 0007 The Machine CSP licensed internal code is to be used to perform
a UNIX™ crypt(3) operation.

National
Hex 0005

Function Identifier 0005

The following description applies only to function identifier 0005.

The controls operand must be 16-byte aligned and have the following format:

Offset
Dec Hex Field Name Data Type and Length
0 0 Controls operand Char(%)
0 0 Function identifier Char(2)
2 2 Hash algorithm Char(1)
Hex 00 =
MDs
Hex 01 =
SHA-1
3 3 Sequence Char(1)
Hex 00 =
Only
Hex 01 =
First
Hex 02 =
Middle
Hex 03 =
Final
4 4 Data length UBin(4)

8 8 Output Char(1)

