
IBM I + node-RED =
succeed faster

in programming

Who are we?

• Small IBM i ISV and IBM business partner located in Oostkamp, (near Bruges)
Belgium.

• Working with IBM i and its predecessors for more than 40 years.

• Applications : accountancy, real estate and customs.

• Expertise in RPG, SQL, PHP, HTML, Unity, nodejs, linux…

• Website : www.cdinvest.be

• IBM Champion 2018/2019 and IBM Fresh Face 2017

• What you don't know how to do, we do.

http://www.cdinvest.be/

Case studies

• JORI : https://www.ibm.com/case-studies/jori

• Fibrocit : https://www.ibm.com/case-studies/fibrocit-systems-furniture-design

• Cras : https://www.ibm.com/case-studies/cras-systems-open-source

• Oris : https://www.ibm.com/case-studies/ORIS

• Deknudt Frames : https://www.ibm.com/case-studies/deknudt-frames

• Bonehill : https://www.ibm.com/case-studies/immo-bonehill-systems-hardware-website-
compliance

• Vanmaele : https://www.ibm.com/case-studies/wijnen-van-maele-systems-software-ibm-i

• Winsol : https://www.ibm.com/case-studies/winsol-systems-hardware-manufacturing-
digitization

https://www.ibm.com/case-studies/fibrocit-systems-furniture-design
https://www.ibm.com/case-studies/cras-systems-open-source
https://www.ibm.com/case-studies/deknudt-frames
https://www.ibm.com/case-studies/immo-bonehill-systems-hardware-website-compliance
https://www.ibm.com/case-studies/winsol-systems-hardware-manufacturing-digitization

Agenda

• what is node-RED ?

• first flows

• visual recognition app

• dashboard app

• chatbot app

• db2 integration + AI analysis

Agenda

• real life use of node-RED

• deep learning – what is it ?

• geomarketing – deep learning example

• next steps

Why Node-RED

Ever had one of those days…

Where the Application works!

And then…

• Can we also get some data from the this whatchamacallit?

• And send the logs off to this other server…

• And add some additional REST endpoints…

Why Node-RED - The Problem

We don't have a simple tool for co-ordinating Events, Business
events – status of processes, alerts from machines Social events –
tweets, alerts, Internet of Things events – temperatures, weather,
lights, doors, …

Something that anyone can use to build situational applications

“Wouldn't it be neat if, when x happens it can tell me...

… and alert Fred...

… and kick off the xyz process...

… or just go ping !”

Why Node-RED

• The internet does not have a one-size-fits-all solution

• Every new “thing” has a new API that must be understood

• Solutions often require pulling together several different device
API’s and online services in new and interesting ways

• Time spent pondering how to access a serial port, or complete
an OAuth flow to Twitter is not time spent on creating the real
time of a solution

Node-RED =
• An application composition tool experience

• A lightweight proof of concept runtime

• Easy to use for simple tasks

• Simple to extend to add new capabilities and types of integration

• Capable of creating the back-end glue between social applications
and business applications

• A great way to try…

“can I just get this data from here to there?”

“and maybe change it just slightly along the way…”

Node-RED ≠

• A fully-scalable, high-performance, enterprise-capable
application runtime

• A dashboard with widgets

• A mobile application builder

• …

On the other hand …
• Node-RED is deployed in a manufacturing production line

• Node-RED can deployed on IBM i glue applications together

• Can be used to --quickly-- build a proof of concept

• Runs on Raspberry Pi’s + Arduinos + Sensors

• Sensor readings and initial processing coordinated via Node-
RED

• Able to adapt and change quickly – redeploying during support
phone calls!

Architecture of Node-RED
• Node.js v8-engine driven;

so it’s fast and can use the 29000+
open-source npm modules…

• Event-driven, asynchronous io;
it’s all about the events

• Single-threaded eventqueue;
built for fairness

• Javascript front and back;
only one language runtime to deal with

• Built using express, d3, jquery and ws

Architecture of Node-RED
• Node-RED nodes provide integration with other systems. Each

node is defined in their own pair of JavaScript and html files
using a simple API and are dynamically loaded by the engine.

• Web interface can be secured or run headless;

Architecture of Node-RED
•

Node-RED

New developers & education

• Short learning curve

• Easy to use

• Low barrier to entry

App Developers

• Rapid prototyping

• Easy to integrate with
existing tools and
applications

• Easy to extend with
richer/bespoke functionality

Node-RED

Community developers

• Open standards

• Flexibility

• Ability to share

Hackers

• Runs on Raspberry Pi,
Beaglebone, C.H.I.P., other
low power devices

• Works with Arduino, etc…

Basic Node types
Inject node

• Allows manual triggering of flows

• Can inject events at scheduled intervals

Debug node

• Show message content; either payload or entire object

Template Node

• Modifies the output based on a Mustache Template

Node-RED Hello World

When you click on the Inject Node, it sends and event through the
flow – triggering the template node and sending the result to the
Debug node

Other input nodes
• HTTP – Act as an HTTP endpoint;

great for building RESTful services

• IBMIOT – Receive messages from
an attached IOT Foundation account

• Also can receive from Websockets,
MQTT (pick your own broker), TCP
and MQ Light

Other output nodes
• HTTP Response; required as the final

node when the input comes
from an HTTP Request

• IBMIOT – send events out to the
attached IOT Foundation account

• Twilio – send SMS messages via
the Twilio service

• IBM Push – Send Push notifications
to mobile devices

• Also can send requests through TCP,
UDP, MQLight, WebSockets.

Function node types
• Function node

• Run user-defined node.js code
on the messages going by

• Uses vm.createScript under
the covers to sandbox execution

• Console, util, Buffer included
for convenience

• Switch node changesflow to different
options based on a comparison

Creating your own nodes
https://nodered.org/docs/creating-nodes/first-node.html

• Easy to wrap any npm module into a palette node

• Each node is defined in a pair of files

• .js: server-side behavior

• .html: appearance in editor and help

• Can be shared and installed via npm

• npm install node-red-node-xmpp

Online flow library

Contributors add flows through Github

Create your first flow

• Logon to the editor

Create your first flow

Create your first flow

• Click the Add icon (+) to create a new flow.

• An application in Node-RED is called a flow.

Create your first flow

• The palette in the left column shows you all the available nodes.

• The nodes are grouped by category. The main categories of nodes are input, output,
and function.

• Use input nodes to input data into a Node-RED application, or flow.

• Use output nodes to send data outside of a Node-RED flow.

• Use function nodes to process data. You can use the function node to

• pass messages though a JavaScript function.

Create your first flow

• Select an input inject node and drag it onto the canvas.

• Select an output debug node and drag it onto the canvas.

Create your first flow

• Link, or wire, the two nodes together by clicking and dragging your cursor from one node to
the other. Note that the debug and inject nodes change their display names when you drag
them onto the canvas. This name change is expected and shows additional context for the
node.

Create your first flow

• Double-click the timestamp node. For the Payload field, select string.

Create your first flow

• Enter a string, such as Hello, this is my first Node-RED application.
• In the Name field, enter a name for this node, such as Hello World inject.

• Click Done.

Create your first flow

• The blue circles indicate that your flow has unsaved changes, which means that the
application needs to be deployed.

• Click Deploy to deploy and save your changes.

Create your first flow

• The debug node writes to the debug tab, which helps you monitor the flow through
your application.

• To initiate the flow, click the tab linked to the inject node.+

• You now see the output on the debug tab.

Create your first flow

• In the filter nodes search field, enter translator to find the language translator node.

Drag the node onto the canvas so that it lies in between the inject and debug nodes. You can
move the nodes to make more space.

To remove an unwanted line, select the line and press Delete on your keyboard.

Create your first flow

Double-click the language translator node. Select to translate from the inject English to
another language.

Click Done to save your changes

Create your first flow

Deploy and click on the input node gives us :

Create your first flow

• Select the language translator node and click the info tab.

Notice that the node puts its translated output in msg.translation. msg is a reserved
object that Node-RED uses to allow individual nodes to communicate with each other.
Think of msg as an envelope into which one node places information that allows another
node to read it. The language translator node is expecting to find a payload that is
already in the msg envelope, and it will insert a translation into the msg envelope.

Create your first flow

Create your first flow

• Open the debug node and change the output to msg.translation. Enter the word
translation after msg. Click Done to save your changes. Then, deploy your flow.

Create your first flow

Initiate the flow by clicking the tab on the inject node.

• View the translated text in the debug tab. The application is translating the text that
you entered in the Payload field of the inject node.

RPG webservices

• Create a new flow tab by clicking +.

• Double-click the new tab and enter a name for the new flow tab. Then click Done. If the
edit screen does not appear click the right menu and rename.

RPG webservices

• Drag and drop a comment node onto the canvas and change the title of the node to
Display an initial web page

RPG webservices

• Drag and drop an input http node onto the canvas. Use the filter nodes search field to
find the nodes.

• Drag and drop an output http response node onto the canvas.

RPG webservices

• Drag and drop a template node onto the canvas between the http and http response
nodes.

• Wire the three nodes together.

RPG webservices

• Double-click the input http node. Edit it to create an HTTP route to your web page by
entering /welcome in the URL field. Enter Inital request as name.

• Click Done

RPG webservices

• Double-click the template node to edit it. Copy the HTML code from the intial html file
and click done.

RPG webservices

• Drag and drop a comment node onto the canvas and change the title of the node to
Query the customer information by using received ID as the key

RPG webservices

• Drag a HTTP in, HTTP request, template, function and HTTP ouput node on the canvas
and tie them together.

RPG webservices

• Change the properties of the HTTP input node into

- method = post

- url /queryCustomer

- name Request for the query of the details of the customer

RPG webservices

• Edit the HTTP request node as follows :

- Method = get

- URL = http://www.cdinvest.be/commonp/custpgm.pgm?customerid={{payload.customerID}}

- Return = a parsed JSON object

- Name = Invoking ILE RPG REST API

http://www.cdinvest.be/commonp/custpgm.pgm?customerid=%7b%7bpayload.customerID%7d%7d

RPG webservices

• Set the name of the template node to HTML of the result of the query and copy the
output.html file content into the template field.

RPG webservices

• Set the name of the function node to “setting of the header” and copy the function :

msg.headers = {"Content-type" : "text/html"};

return msg;

Web browsers need a valid content header.

RPG webservices

• Deploy your changes.

• Test your application by entering 938472 as customerid.

RPG webservices

• Add a debug node, link it to the request output, you can then see debug output as well

RPG webservices

• Add a template node to display an error message in case the customer was not found
and insert the notfound html

RPG webservices

• Remove the debug node and link, remove the link from the http request and add a
switch node.

RPG webservices

• Link the request node to the input of the switch node. Edit the switch node as follows
and click done.

RPG webservices

• Link the the top output of the switch node to the original html ouput, link the bottom
node to the new not found template. Link the new not found template to the http
header function and click Deploy.

RPG webservices

• Deploy your changes.

• Test your application by entering 123456 as customerid.

Visual recognition

• Go to the IBM Cloud catalog and search for the Visual recognition service.

• Click connections after the create. Select your instance and restage the node-red
instance. On your own server you will have to enter the credentials on the visual
recognition node.

Visual recognition

• The flow will present a simple web page with a text field of where to input the image's
URL, then submit it to Watson Visual Recognition. It will output the labels that have
been found on the reply Web page.

Visual recognition

• The nodes required to build this flow are:

• node, configured with a /recognition URL

• node to test for the presence of the imageurl query parameter

Visual recognition

• node, configured to output an HTML input field and suggest a few selected
images stored on our webserver. (visual1.html) Linked to the top output of the switch
node. Change the output as to blanks or plain text !

Visual recognition

• node (named Extract img url here) to extract the imageurl query parameter
from the web request and assign it to the payload to be provided as input to the visual
recognition service.

Visual recognition

• node. Make sure that the credentials are setup from IBM Cloud, i.e. that
the service is bound to the application. This can be verified by checking that the
properties for the Visual Recognition node are clear:

Visual recognition

• node, configured to output an HTML which returns the output returned from
the visual recognition node. (report.html)

Visual recognition

• node, linked with both template nodes to output the HTML.

Visual recognition

• Click Deploy

• To run the web page, point your browser to https://XXXXX.eu-
gb.mybluemix.net/recognition and enter the URL of some image.

• The URL of the pre-selected images can be copied to clipboard and pasted into the text
field.

• The Watson Visual Recognition API will return an array with the recognized features,
which will be formatted in a HTML table by the template. A print screen can be found
on the next slide.

Visual recognition

•

Dashboard

First, we need to install the node-red-dashboard node in our Node-RED palette. In Node-
RED, click the button at the upper-right corner and click Manage palette.

Dashboard

• On the Install tab, search for node-red-dashboard, and click Install. Wait for the
installation confirmation dialog box to be displayed, and then restart Node-RED if
necessary.

Dashboard

• Create a new flow tab by clicking +.

• Double-click the new tab and enter a name for the new flow tab. Then click Done. If the
edit screen does not appear click the right menu and rename.

Dashboard

• Set up a simple flow to send a random number every 5 seconds to a chart.

• Add an inject node to send a timestamp every 5 seconds by setting the payload to
timestamp and the repeat field to an interval of 5 seconds.

Dashboard

• Add a function node to return a random number. Link it to the inject node

Function :

msg.payload = Math.round(Math.random()*100);

return msg;

Dashboard
• Add a chart node and link it to our function node. Change the X-axis to

last 5 minutes and click on the pencil next to the group field to configure the tabs of the
UI.

Dashboard

• The next screen appears. Click on the pencil next to the tab field.

Dashboard

• Setup the tab config as home and click Add.

Dashboard

• On the add group config click Add and click Done to save the chart node.

Dashboard

• Click Deploy and go to https://<yourinstancename>.eu-gb.mybluemix.net/ui/ and
watch the chart change each 5 seconds.

Dashboard

• If you look at the top left of the web page, you can see that we are, by default, on the
home tab. If you had created your own tab then when you click the selector top left
you’ll get a pull down menu of your tab options:

Dashboard
• Add a gauge node and also link it to our random number function node. We

add it to our same group.

The Min and Max fields allow you to set

the min and max values the gauge will

shown. Make sure the max is set to 100

which is the most that the random number

function node will generate. You can also

change the Colour gradient to show

different colours on the widget.

Dashboard

• Click Deploy. You should see the following screen.

Dashboard

• Add a slider node and link it to the random number function

• Add a text node and link it to the random number function

Dashboard

• For these two nodes, configure them to use the same tab – “Home” but use group
name “anotherWidget”(You will need to click “Add new UI_group” from the drop down
menu of the Group field, and then click the edit button).

Dashboard

• Enter the anotherWidget name and click Add.

Dashboard

• Set the min/max values on the slider and click Done.

Dashboard
• Set up the text node as follows :

Dashboard

• Click Deploy. You should see the following screen.

Dashboard

• In the dashboard tab beside your debug tab, you can also set the theme and order of
the elements.

• If you don’t see the dashboard tab, click the menu button at top right corner, then
select “View” -> “Dashboard”.

• You can see all the widgets and tabs showing in a tree structure,

• and you can easily drag the elements to change the orders that they are presented in
the dashboard.

Dashboard

Chatbot

• Create a new bot on Telegram's BotFather

• Download and start the telegram app and create a free account. (Telegram.org)

Chatbot
• Search for @BotFather at the search bar on top and select it

Chatbot

• send /newbot command / message to BotFather

• Enter the name and username of your bot, for example: name: Watson Chat Bot

• username: WatsonChat<your_initials>Bot (Replace <your_initials> with your initials
or any other names) (info WatsonChatKDCBot)

Chatbot

• Once created, you’ll be given a token string

Chatbot

First, we need to install the node-red-contrib-telegrambot node in our Node-RED palette.
In Node-RED, click the button at the upper-right corner and click Manage palette.

Chatbot

• On the Install tab, search for node-red-contrib-telegrambot, and click Install. Wait for
the installation confirmation dialog box to be displayed, and then restart Node-RED if
necessary.

Chatbot

• Create a new flow tab by clicking +.

• Double-click the new tab and enter a name for the new flow tab. Then click Done. If the
edit screen does not appear click the right menu and rename.

Chatbot

• Drag a telegram command node on the canvas. Enter /echo in the command,
change the name to Watson Chat Bot. Click on the pencil to edit the chatbot settings.

Chatbot

• Fill in name and Token. Leave other fields blank and click Add and done.

Chatbot

• add a telegram sender node. Link it to the top output of the command node.
Double click it. Select the bot you just defined and click done.

• Your flow should look like this. Click Deploy.

Chatbot

• On your Telegram app add the bot that you have created as a contact

• Send the following message: /echo <any_message_here>

• You should receive the same message back, without the /echo command

Chatbot

• Go to the IBM Cloud catalog, and search for Watson Assistant.

• Select the service and ensure that the region, organization, and space are
the same as your Node-RED instance.

• Click Create to create the service.

Chatbot

• Click launch tool to start the tool.

• Create a new workspace by clicking Create

• Enter Watson Chat Bot as the Name and click Create

Chatbot

• Click on add intent

• Enter Intent name: #greetings and click create intent now add the following user
examples : hello, hi, howdy, hey, dag

Chatbot

• Create another one with the following values:

Intent name: #farewell

User example:

• goodbye

• bye

• so long

• see you later

• ciao

Chatbot

• Click on the Dialog tab to configure the dialog flow

• Click Create

• Click add node button

Chatbot

• Name this node: Greetings

• If bot recognizes: #greetings

• Then respond with: hello

• Then, click the button on the right of the Greetings node and click Add node below to
create another node.

• Name this node: Farewells

• If bot recognizes: #farewell

• Then respond with: goodbye

Chatbot

•

Chatbot

• To test it, click on the try it icon at the top-right, to open a chat box

• Try saying the user examples that we created earlier, and it should response accordingly

• Even with some minor typos, or missing words, it may recognize your intent and
response accordingly

Chatbot

• Click workspaces, click view details. Copy the workspace ID for use in node-RED

Chatbot

• Add another flow with the following connection sequence of nodes and connect the
output of the node to the input of the next node: telegram command- function -
assistant - function - telegram sender

• Configure both telegram nodes to use the WatsonChatBot and set the Telegram
Command to use the /watson command

Chatbot

• Double click the 1st function node to configure it

• Enter Prepare for Conversation as the Name

• Enter the following as the Function and click Done

msg.chatId = msg.payload.chatId;

msg.payload = msg.payload.content;

return msg;

Chatbot

• Double click the Assistant node to configure it

• Enter your credentials

• Enter the Workspace ID that you have copied earlier, then click Done

Chatbot

• Double click the 2nd Function node to configure it

• Enter Prepare for Telegram as the Name

• Enter the following as the Function and click Done

msg.payload = {

chatId : msg.chatId,

type : "message",

content : msg.payload.output.text[0]};

return msg;

Chatbot

• Click Deploy

• On your Telegram app send the following message to the chat bot: /watson hey

• You should receive hello message back

• Try with farewell messages instead

• You should receive goodbye message back

Chatbot

• Go to the Watson assistant and create a new intent with the following values:

Intent name: # translate

User example:

• Can you translate?

• Please translate

• Translate

• Do you know how to translate?

• Translate for me please

Chatbot

Click on the Entities tab and click the Create new button

• Enter the following and click Create:

• Entity name: language

Values:

• English

• French

• Italian

• Spanish

Chatbot

•

Chatbot

• Click on the Dialog tab and add a new dialog node under #farewell

• Enter the following and click the X button:

Name this node: Translate

If bot recognizes: #translate

Then respond with: What language do you want to translate from?

Chatbot

• Add a new child node under #translate

• Enter Source Language as the Name, @language on the “If bot recognizes”, , click on
the button on the right under Then respond with, and click Open JSON Editor

Enter the following text:

{

"context": { "source": "@language" },

"output": {

"text": {

"values": ["What language do you want to translate to?"]}}}

Chatbot

• Add another child node under source language

• Enter Destination Language as the Name, @language on the “If bot recognizes”, , click
on the button on the right under Then respond with, and click Open JSON Editor

• Enter the following text:

{

"context": { "destination": "@language" },

"output": {

"text": {

"values": ["What is the text that you want to translate?"]}}}

Chatbot

•

Chatbot

• Add another child node under destination language

Enter Do Translate as the Name, anything_else on the “If bot recognizes”, click on the
button on the right under Then respond with, and click Open JSON Editor

Enter the following text:

{

"context": { "action" : "translate" },

"output": {}

}

Chatbot

•

Chatbot

• Go back to the Node-RED workspace

• Add a switch node and position it at the right of the assitant node

• Double click the switch node and set the Property to msg.payload.context.action

• At the option below it, select == and enter translate as the value

• Click +add and select otherwise then click Done

Chatbot

• Add a function node next to the switch node

• Double click the function node to configure it

• Enter Prepare for Translator as the Name

• Enter the following as the Function and click Done

msg.srclang = getLanguage(msg.payload.context.source);

msg.destlang = getLanguage(msg.payload.context.destination);

msg.payload = msg.payload.input.text;

return msg;

Chatbot

function getLanguage(lang) {

switch (lang.toLowerCase()) {

case "french":

return "fr";

case "italian":

return "it";

case "spanish":

return "es";

}

return "en";

}

Chatbot

• Next, add the language translator node

• Double click the language translator node to configure it

Chatbot

• Next, add another function node, name it as Prepare for Telegram 2 and put it to the
right of the language translator node

• Enter the following as the Function and click Done

msg.payload = {

chatId : msg.chatId,

type : "message",

content : msg.payload

};

return msg;

Chatbot

• Add one more function node next to the language translator node and name it Clear
Conversation Context

• Enter the following as the Function and click Done

msg.payload = "hi";

msg.params = {

context : {}

}

return msg;

Chatbot
• Copy the assistant node, put it next to the Clear Conversation Context function node and name it assistant 2

• Disconnect the connection between the conversation and Prepare for Telegram node

• Connect the following nodes accordingly

• assistant > switch

• switch (1st output) > Prepare for Translator

• Prepare for Translator > language translator

• language translator > Prepare for Telegram 2

• Prepare for Telegram 2 > Telegram Sender

• language translator > Clear Context

• Clear Context > assistant 2

• switch (2nd output) > Prepare for Telegram

• Then, click the Deploy button

Chatbot

• Test Language Translator Integration with Node-RED on Telegram

• On your Telegram app send the following message to the chat bot:

/watson please translate

You should receive a reply asking for the source language. Reply:

/watson english

Chatbot

• You should receive a reply asking for the target language. Reply:

/watson french

• You should receive a reply asking for the text to be translated. Reply with the text you
want to translate, for example:

/watson Where is the nearest restroom?

• You should receive a reply with the translated text

Chatbot

•

Chatbot

• Change the telegram command node with a reciever node. You can now do the same
thing without adding the /watson command to it.

Chatbot

•

DB2 integration

First, we need to install the Db2 for i node in our Node-RED palette. This only works on a
Node-Red running on ibm i

• In Node-RED, click the button at the upper-right corner and click Manage palette.

DB2 integration

• On the Install tab, search for db2, and then search for node-red-contrib-db2-for-i, and
click Install. Wait for the installation confirmation dialog box to be displayed, and then
restart Node-RED.

DB2 integration

• Browse the node palette on the left side and notice that the Db2 for i node is available
in the Storage category.

DB2 integration

Let's test the node with a simple query. Drag the Db2 for i node to a new flow, as shown
in the following figure. Then, add SQL Query as the inject node and msg.payload as the
debug node.

DB2 integration

• Configure the Inject node with the settings and SQL query as shown in the following
figure.

DB2 integration

• Configure the Db2 for i node with the settings as shown in the following figure.

DB2 integration

• Set up a configuration node by specifying a connection name and, optionally, a user
name/password if you don't want to use the current user profile running Node-RED,
and you want to specify a particular user profile for connecting your database. Then
click Add and Done.

DB2 integration

• Test this simple flow by clicking Deploy and then click the Inject node button on the
left side of your flow as shown in the following figure.

DB2 integration

• Look into the results (JSON array of rows) of the SQL query in the Debug panel.

Call Twitter APIs and feed your Db2 for i database with
tweets – IBM example (see links)

• To do so, you just have to manually drag and configure five nodes in your Node-RED
flow editor.

- A comment node

- A twitter input node

- A sentiment analysis node

- A function node

- A DB2 for i node

DB2 integration

Change the comment node as follows :

DB2 integration

Configure the twitter node :

DB2 integration

Copy the function javascript in the function node and name it prepare for insert

DB2 integration

Edit the DB2 for i connection

DB2 integration

• Click Deploy and wait for Twitter activity. You can optionally add a Debug node in your
flow to see the Twitter activity in the Debug view.

• Verify that your Tweets table is being populated by querying your table occasionally,
either from your favorite SQL editor or from a Node-RED flow.

DB2 integration

We can enrich incoming tweets with IBM Watson services, for example, to translate the
incoming tweets into English on the fly before performing sentiment analysis.

First install node-red-node-watson locally.

Create a subflow

DB2 integration

• Click 1 on input to add an input to the subflow.

• Add language identify node and link it to the input node

DB2 integration

• Add a Watson translator node and configure the two Watson nodes (by specifying the
user name, password, and endpoint if needed), each pointing to the same IBM Watson
service you have just instantiated on IBM Cloud, but each using a different API function
(language identity and language translation).

• Add a switch node and link it to the language identify, add a function and link it to the switch add an output
and link it to the function

DB2 integration

• Edit the switch node as follows :

DB2 integration

• Add a new function and link it to the top switch and language translator.

• Link translator to the bottom function

• Link the bottom switch to the function linked with the output

DB2 integration

• Edit the function before the translate node as follows :

DB2 integration

• Deploy the subflow. Add it to the twitter insert flow and add an input and debug node
to it.

DB2 integration

• Change the input node to string and write a string in French. Deploy and click to view
the debug data. Then delete the input node and debug node and insert the translation
subflow before the sentiment node

DB2 integration

• Create a social media dashboard, mixing your business data on Db2 for i with data
coming from the IBM Cloud and IoT.

Install the dashboard nodes.

Many Node-RED exist for generating UI and graphs.
From your Node-RED editor, in the upper-right menu, click Manage palette, and search
for node-red-dashboard. Then, click Install and restart Node-RED.

DB2 integration

• Import the JSON file as a flow and change your IBM i settings. The database is provided
with the SQL file.

DB2 integration

DB2 integration

• Change the db2 nodes to your system settings.

• Deploy and access your dashboard. The refresh rate in the just imported code is set to
10 minutes. So, if you don't want to wait, go to your flow editor and force a dashboard
refresh by clicking each inject nodes on the left side of your flow. The dashboard URL is
available at the right side of the dashboard panel.

DB2 integration

Google search terms

Hype or reality ?

What is Artificial Intelligence?

Artificial

Intelligence

Output:

Movement

Text

Input:

Sensors

Data

Machine Learning - Basics

Machine Learning is a type of Artificial Intelligence that provides

computers with the ability to learn without being explicitly

programmed.

Machine Learning

Algorithm

Learned Model

Data

Prediction

Labeled Data

Training

Prediction

Provides various techniques that can learn from and make predictions on data

Machine Learning - Learning Approaches

Supervised Learning: Learning with a labeled training set

Example: email spam detector with training set of already labeled emails

Unsupervised Learning: Discovering patterns in unlabeled data

Example: cluster similar documents based on the text content

Reinforcement Learning: learning based on feedback or reward

Example: learn to play chess by winning or losing

What is DeepLearning?

Part of the machine learning field of learning representations of

data. Exceptional effective at learning patterns.

Utilizes learning algorithms that derive meaning out of data by using

a hierarchy of multiple layers that mimic the neural networks of our

brain.

If you provide the system tons of information, it begins to

understand it and respond in useful ways.

Inspired by the Brain

The first hierarchy of neurons

that receives information in the

visual cortex are sensitive to

specific edges while brainregions

further down the visual pipeline

are sensitive to more complex

structures such asfaces.

Our brain has lots of neurons connected together and the strength of

the connections between neurons represents long term knowledge.

One learning algorithm hypothesis: all significant mental algorithms

are learned except for the learning and reward machinery itself.1

Why Deep Learning?

Speech

Recognition

Computer

Vision

Natural Language

Processing

A brief History

1974Backpropagation

awkward silence (AI Winter)

1995

SVM reigns

Convolution Neural Networks for

Handwritten Recognition

1998

2006
Restricted

Boltzmann

Machine

1958 Perceptron

1969

Perceptron criticized

Google Brain Projecton

16k Cores

2012

2012

AlexNet wins

ImageNet

What changed? Old wine in new bottles

Big Data
(Digitalization)

Computation
(Moore’s Law,GPUs)

Algorithmic

Progress

The Big Players

Geoffrey Hinton: University of Toronto & Google

Yann LeCun: New York University & Facebook

Andrew Ng: Stanford& Baidu

Yoshua Bengio: University ofMontreal

Jürgen Schmidhuber: Swiss AI Lab & NNAISENSE

No more feature engineering

Feature

Engineering

Traditional

Learning

AlgorithmInput Data

Costs lots of time

Deep

Learning

AlgorithmInput Data

Deep Learning - Architecture

A deep neural network consists of a hierarchy of layers, whereby each layer

transforms the input data into more abstract representations (e.g. edge ->

nose -> face). The output layer combines those features to make predictions.

Deep Learning -What did it learn?

Edges Nose,Eye… Faces

Deep Learning - Artificial Neural Networks

Consists of one input, one output and multiple fully-connected hidden layers in-

between. Each layer is represented as a series of neurons and progressively extracts

higher and higher-level features of the input until the final layer essentially makes a

decision about what the input shows. The more layers the network has, the higher-

level features it will learn.

Deep Learning -The Training Process

Forward it trough

the network to get

predictionsSample labeled data

Backpropagate

the errors

Update the

connection weights

Learns by generating an error signal that measures the difference between the

predictions of the network and the desired values and then using this error signal

to change the weights (or parameters) so that predictions get more accurate.

DeepMind Deep Q-Learning

Outperforms humans in over 30 Atari games just by receiving the pixels on the

screen with the goal to maximize the score (Reinforcement Learning)

Deep Learning – Usage requirements

Large data set with good quality (input-output mappings)

Measurable and describable goals (define the cost)

Enough computing power (AWS GPUInstance)

Excels in tasks where the basic unit (pixel, word) has very little meaning

in itself, but the combination of such units has a useful meaning

Deep Learning -Tools
Its all OpenSource

Next steps – general info

• https://nodered.org/

• https://www.youtube.com/watch?v=O9sCM_l7SiI

https://nodered.org/

Next steps – courses and IBM i info

• https://www.ibm.com/developerworks/ibmi/library/i-running-node-red/index.html

• https://www.ibm.com/developerworks/cloud/library/cl-rtchat-app/index.html

• https://www.ibm.com/developerworks/ibmi/library/i-it-helpdesk-chatbot/

• https://developer.ibm.com/courses/all/node-red-basics-bots/?course=begin#4069

• https://www.ibm.com/developerworks/ibmi/library/i-ile-rpg-cloud-integration/

THANK YOU FOR YOUR ATTENTION

