

## Welcome !



#### Introduction

# Agenda

- From the Stone Age to the Store Age
- Would you Dare ?
- Back to the Future
- Questions and Answers …



#### What is Flash Memory ?

- Electronic (solid-state) non-volatile computer storage
  - Can be electronically erased
  - Can be electronically (re)programmed
- Based on cells built on NAND (NOT-AND) gates
- Cells grouped into pages
- Pages grouped into blocks



Page

Block

## **Allowed Operations**

- Read a page
- Program (write) a page
- Erase a block

## **Disallowed Operations**

- "Rewrite" a block or a page
- Erase a page

# **Techniques**

- Over-provisioning
- Bad block detection
- Wear levelling
- Triggering



# Flash Memory : Terminology Used

- SSD = Solid State Drive
  - Device that uses solid-state storage to store data persistently
  - Please don't call it anymore a "disk" !
- Program/Erase (P/E) cycle
  - When data is written to a cell, erased, and re-written
- SLC = Single Level Cell
  - Single bit value per cell (2 values)
  - Longest lifespan, most expensive
  - Supports up to 100.000 P/E cycles
- MLC = Multi Level Cell
  - Two bits of data per cell (4 values)
  - Supports up to 10.000 P/E cycles
- eMLC = Enterprise Multi Level Cell
  - Enhanced controller logic, error recovery, construction density
  - Supports up to 30.000 P/E cycles



#### Flash Memory : Terminology Used

- TLC = Triple Level Cell
  - Three bits of data per cell (8 values)
  - Higher requirements for error correction and wear levelling
  - Supports up to 5.000 P/E cycles
- 3DTLC
  - TLC organised in spatial layers (X, Y and Z axis)
  - From 32 to 48 layers …
  - From 48 to 64 layers …
- QLC = Quad Level Cell
  - Four bits of data per cell (16 values)
  - Currently in early deployment ...
- PLC = Penta Level Cell
  - Five bits of data per cell (32 values)
  - Currently in development ...



## Performance

- Hard Disk Drive
  - Enterprise 10k and 15k RPM
  - Performance stays around 200 I/O per second
  - Power consumption
    - ★ 2.5" : 0.7 to 3.0 Watts
    - ★ 3.5" : 6.5 to 9.0 Watts
- Flash Memory
  - No mechanical moves
  - No rotational delay
  - Lower latency
  - Higher IO/s
  - Performance > 1.000.000 I/O per second
  - Power consumption
    - ★ 0.6 to 1.8 Watts



## About "Read-Intensive" (aka. "Mainstream") Flash Memory

- What is it ?
  - Lower endurance solid-state manufacturing
    - ★ Use of MLC/TLC instead of SLC/eMLC
    - ★ Lower over-provisioning
  - Lower cost
  - Lower write performance
- DWPD = Drive Write Per Day
  - Highest endurance : support up to 30 DWPD
  - Enterprise @ IBM : support up to 10 DWPD
  - Enterprise @ OEM : support up to 3 DWPD
  - Mainstream : support 1 DWPD
  - Laptop SSD : supports up to 0.3 DWPD
  - USB Stick : support up to 0.1 DWPD



## About "Read-Intensive" (aka. "Mainstream") Flash Memory

- Recommandations
  - Do not mix read-intensive drives with mainstream drives in disk arrays
  - Do not use read-intensive drives for easy-tiering
  - Monitoring end of life for read intensive drives
    - ★ Predictive Failure Analysis (PFA)
    - ★ Using the fuel gauge command
  - Plan for RAID-6 or DRAID-6 !
  - Plan for over-provisioning
  - Plan for spares !



# IBM FlashCore Technology ?

- The DNA of the IBM FlashSystem Family
- Able to monitor individual flash cells
  - Extremely low latency
  - Predictive Techniques
- Unprecedented capacity
  - High performance compress/decompress algorithms
  - Compression came from IBM Mainframe
  - Minimize data written to flash
  - Data reduction is transparent
- Modules (raw) capacities
  - 4.8 TB
  - ▶ 9.8 TB
  - 19.2 TB
  - 38.4 TB
- Extreme endurance
  - 10 DWPD !
  - Chip-level RAID on modules (VSR)
- Complexity of firmware



# **IBM SCM (Storage Class Memory) ?**

- The cache/memory/storage hierarchy is rapidly becoming the bottleneck for large systems
- Speeds Paradigm
  - CPU : 1 ns
  - CPU Cache : < 5 ns</p>
  - RAM : 60 ns
  - ▶ FCM : < 100 µs</p>
  - SSD : < 1 ms</p>
  - ► HDD : < 5 ms
  - Tape : 40 s
- Human Perspective
  - CPU : second
  - CPU Cache : second
  - RAM : minute
  - Storage : month
  - Tape : millenium
- Goal of SCM ?
  - Fulfil the gap between memory and storage

# IBM SCM (Storage Class Memory) ?

- A "new" device ...
- •

## **NVMe or NVM Express**

- Non-Volatile Memory (Host Controller Interface) Specification
  - Protocol created to accelerate the transfer between hosts and storage
  - Over high-speed PCIe Bus
- Legacy design
  - PATA
  - SATA
  - SCSI
  - SAS
- New design
  - More efficient interface
  - Lower latency
  - More scalable
- NVMe-oF
  - New kind of transport to allow NVMe from host to storage

# **Limitations of Flash**

- Asymmetric performance
  - Program/erase cycle
- Endurance
  - Single level cell (SLC) :10<sup>5</sup> writes/cell
  - Multi level cell (MLC) : 10<sup>4</sup> writes/cell
  - Triple level cell (TLC) : ~300 writes/cell

•



# Flash Storage versus SSD ?

- Solid State Drive
  - Flash memory
  - Accessed through SAS controller/device interface chain
    - ★ SAS-2 : 6 Gbps, ~ 750 MB/s
    - ★ SAS-3 : 12 Gbps, ~ 1500 MB/s
    - ★ SAS-4 (future) : 22.5 Gbps, ~ 2800 MB/s
- Flash Storage
  - Flash memory
  - Accessed directly through PCIe bus !
    - ★ PCIe 2 : 500 MB/s (x1) 8000 MB/s (x16)
    - ★ PCIe 3 : 985 MB/s (x1) 15750 MB/s (x16)
    - ★ PCIe 4 : 1969 MB/s (x1) 31510 MB/s (x16)
  - Micro latency : from milliseconds to microseconds
- One second is …
  - One thousand milliseconds (ms)
  - One million microseconds (µs)
- Short comparison
  - HDD : 5 ms
  - SSD : 1 ms (÷5)
  - Flash : 100 µs (0,1 ms ... ÷10 ... ÷50) !



## **Target Applications**

- Databases
- Virtual Desktop Infrastructure
- Latency Sensitive Apps



## Technologies ...

|                | SAS HDD           | SAS SSD        | NVMe SSD         | NVMe FCM                  | NVME SCM         |
|----------------|-------------------|----------------|------------------|---------------------------|------------------|
| Type of Media  | Rotating<br>Media | 3D NAND        | 3D NAND          | 3D NAND                   |                  |
| Protocol       | SCSI              | SCSI           | NMVe             | NMVe                      | NMVe             |
| Physical size  | 2.5"<br>3.5"      | 2.5"           | 2.5"             | 2.5"                      | 2.5"             |
| Capacities     | 2 TB - 20 TB      | 1.9 TB - 30 TB | 800 GB - 15.4 TB | 4.8 TB - 38.4 TB          | 375 GB - 1.6 TB  |
| Differentiator |                   |                |                  | Compression<br>Encryption | Very low latency |
| Speed          | 3ms - 5ms         | < 1ms          | 150µs - 250µs    | 70µs - 100µs              | 15µs             |



## Would you Dare ?

## Performance of "All-Flash" configuration would allow

- Distributed RAID-6
- Encryption
- Compression/deduplication
- Snapshotting
- **...**



# **Distributed RAID (DRAID)**

- Distributed ?
  - Protection capacity distributed over all drives
  - Spare capacity distributed over all drives
  - No dedicated spare drive : everyone works !
- Advantages ?
  - Better performance
  - Faster rebuilt time

#### DRAID-5

- Stripe data over all the members
- One parity strip for every data stripe
- Tolerate the failure of one member drive

#### DRAID-6

- Stripe data over all the members
- Two parity strips for every data stripe
- Tolerate the failure of two member drives
- Recommendation
  - Use (D)RAID-6 when unit capacity is over 1 TB !
  - Drive rebuilt is sufficiently long to encounter a second failure ...



# **RAID 5 versus RAID 6**

- RAID 5 provides good protection
  - Drive capacities are an issue
  - A second failure is disastrous
- RAID 6 provides better protection
  - Two simultaneous failures ?
- RAID 6 is the better choice
  - To be strongly recommended for units above 1 TB !
  - Must be mandatory for full flash configurations
- DRAID is better than RAID
  - Definitely !
  - Beware of constraints ...



# **Encryption Support**

- Encryption-capable
  - Optional (chargeable) capability of a device to encrypt data by using a secret key
- Encryption-disabled
  - No secret key is configured
  - Note that FlashCore devices always encrypt data with an IBM well-know key
- Encryption-enabled
  - A secret key is configured
  - The device encrypts user and metadata with that key
- Access-control-enabled
  - An access key must be provided to access an encrypted entity
- Protection-enabled
  - Encryption-enabled
  - Access-control-enabled
- Protection Enablement Process (PEP)
  - Performed during storage device initialisation process
- Application transparent encryption



# Would you Dare ?

# (Real-time) Compression

- Data storage reduction technology
  - Inline, lossless data compression
- When/where used ?
  - Active primary data and/or replicated/mirrored data
  - General-purpose, database, virtualized infrastructures volumes
- DOs and DONTs
  - Best candidates are data type not compressed by nature
    - ★ Database and/or character data
    - ★ E-mail systems
    - ★ Vector data (CAD/CAM)
  - Worse candidates are
    - ★ Compressed audio/video (JPEG, MPEG, …)
    - ★ Compressed user productivity formats (DOCX, PPTX, XLSX, ...)
    - ★ Other compressed formats (TAR, ZIP, …)
    - ★ Encrypted data
- Used on following IBM products
  - Spectrum Virtualize
    - ★ SAN Volume Controller
    - ★ Storwize V7000 Gen2 and V5030 Gen2 (without compression accelerators)
- Recommendation



EUROPE LUXEMBOURG

## Would you Dare ?

# **Deduplication**

- Data storage reduction technology
- When/where used ?
  - Effective when highly redundant data sets can be found
    - ★ Backup
    - ★ Virtualization
  - Relies on a (highly solicited) database to store pointers
    - ★ Performance access relies on the health of that database
    - $\star$  Data integrity relies on the health of that database
    - ★ Why not DRAID-6 on Flash ?
- Recommendation
  - Use Data Reduction Estimator Tool



- Entry solution, built-in with Spectrum Virtualize
- Capacities
  - Cache : 16, 32 or 64 GB
  - 392 Drives
- External Connectivity
  - FC, iSCSI, iWARP, RoCE, SAS
- Internal Connectivity
  - SAS
- Maximum 10 expansions
- No Cluster
- Can be hybrid



- Entry solution, built-in with Spectrum Virtualize
- Capacities
  - Cache : 32 or 64 GB
  - 504 Drives
- External Connectivity
  - FC, iSCSI, iWARP, RoCE, SAS
- Internal Connectivity
  - SAS, NVMe
- Maximum 20 expansions
- 2-Ways Cluster
- Can be hybrid



- Entry solution, built-in with Spectrum Virtualize
- 24x NVMe slots in the control unit
- Capacities
  - CPU : 2x 8-Cores
  - Cache : 64 to 576 GB
  - 504 Drives
  - Maximum I/Os : 900000
  - Maximum Throughput : 15 GB/s
- External Connectivity
  - FC, FC-NVMe, iSCSI, iWARP, RoCE, SAS
- Internal Connectivity
  - SAS, NVMe
- Maximum 20 expansions
- 2-Ways Cluster
- Can be hybrid



- Midrange solution, built-in with Spectrum Virtualize
- 24x NVMe slots in the control unit
- Capacities
  - CPU : 4x 8-Cores
  - Cache : 256 to 1536 GB
  - 504 Drives
  - Latency : < 70 µs</p>
  - Maximum I/Os : 2300000
  - Maximum Throughput : 35 GB/s
- External Connectivity
  - FC, FC-NVMe, iSCSI, iWARP, RoCE, SAS
- Internal Connectivity
  - SAS, NVMe
- Maximum 20 expansions
- 4-Ways Cluster
- Can be hybrid



# IBM FlashSystem 9200/9200R

- High-end solution, built-in with Spectrum Virtualize
- 24x NVMe slots in the control unit
- Capacities
  - CPU : 4x 16-Cores
  - Cache : 256 to 1536 GB
  - 504 Drives
  - Latency : < 70 us</p>
  - Maximum I/Os : 4500000
  - Maximum Throughput : 45 GB/s
- External Connectivity
  - FC, FC-NVMe, iSCSI, iWARP, RoCE, SAS
- Internal Connectivity
  - SAS, NVMe
- Maximum 20 expansions
- 4-Ways Cluster
- Can be hybrid

#### **Questions & Answers**



## Thank You !



